考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題含完整答案詳解【全優(yōu)】_第1頁(yè)
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題含完整答案詳解【全優(yōu)】_第2頁(yè)
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題含完整答案詳解【全優(yōu)】_第3頁(yè)
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題含完整答案詳解【全優(yōu)】_第4頁(yè)
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試題含完整答案詳解【全優(yōu)】_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計(jì)這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6202、平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是()A. B. C. D.3、7個(gè)小正方體按如圖所示的方式擺放,則這個(gè)圖形的左視圖是()A.B. C.D.4、在不透明口袋內(nèi)裝有除顏色外完全相同的5個(gè)小球,其中紅球2個(gè),白球3個(gè).?dāng)嚢杈鶆蚝?,隨機(jī)抽取一個(gè)小球,是紅球的概率為()A. B. C. D.5、如圖,在中,,,,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.6、在一個(gè)不透明的盒子中裝有12個(gè)白球,4個(gè)黃球,這些球除顏色外都相同.若從中隨機(jī)摸出一個(gè)球,則摸出的一個(gè)球是黃球的概率為()A. B. C. D.7、如圖,幾何體的左視圖是()A. B. C. D.8、下面的圖形中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,正方形ABCD的邊長(zhǎng)為1,⊙O經(jīng)過(guò)點(diǎn)C,CM為⊙O的直徑,且CM=1.過(guò)點(diǎn)M作⊙O的切線分別交邊AB,AD于點(diǎn)G,H.BD與CG,CH分別交于點(diǎn)E,F(xiàn),⊙O繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個(gè)結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫(xiě)所有正確結(jié)論的序號(hào)).2、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點(diǎn)O與⊙A的位置關(guān)系是______.3、如圖,正三角形ABC的邊長(zhǎng)為,D、E、F分別為BC,CA,AB的中點(diǎn),以A,B,C三點(diǎn)為圓心,長(zhǎng)為半徑作圓,圖中陰影部分面積為_(kāi)_____.4、如圖,在中,,是內(nèi)的一個(gè)動(dòng)點(diǎn),滿足.若,,則長(zhǎng)的最小值為_(kāi)______.5、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長(zhǎng)為_(kāi)_.6、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為_(kāi)_____.7、如圖,AB是半圓O的弦,DE是直徑,過(guò)點(diǎn)B的切線BC與⊙O相切于點(diǎn)B,與DE的延長(zhǎng)線交于點(diǎn)C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為_(kāi)_____.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,在直角坐標(biāo)系中,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°.(1)畫(huà)出旋轉(zhuǎn)后的△AB1C1,并寫(xiě)出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.2、如圖,在6×6的方格紙中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1,A,B兩點(diǎn)均在格點(diǎn)上.請(qǐng)按要求在圖①,圖②,圖③中畫(huà)圖:(1)在圖①中,畫(huà)等腰△ABC,使AB為腰,點(diǎn)C在格點(diǎn)上.(2)在圖②中,畫(huà)面積為8的四邊形ABCD,使其為中心對(duì)稱圖形,但不是軸對(duì)稱圖形,C,D兩點(diǎn)均在格點(diǎn)上.(3)在圖③中,畫(huà)△ABC,使∠ACB=90°,面積為5,點(diǎn)C在格點(diǎn)上.3、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來(lái)面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺(jué)…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實(shí)非常神奇了…數(shù)學(xué)劉老師:大家想一想,既然結(jié)果如此簡(jiǎn)單到極致,不計(jì)算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個(gè)東西,這個(gè)圖能不能尺規(guī)畫(huà)出來(lái)啊感覺(jué)圖都定了.我怎么想不出來(lái)呢?計(jì)算驗(yàn)證(1)通過(guò)計(jì)算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過(guò)拼圖能直接“看”出“20”請(qǐng)?jiān)趫D中畫(huà)出拼圖后的4個(gè)直角三角形甲、乙、丙、丁的位置,作必要標(biāo)注并簡(jiǎn)要說(shuō)明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點(diǎn)D在線段AB上,以AB為斜邊求作一個(gè)Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點(diǎn)D.(保留作圖的痕跡,寫(xiě)出必要的文字說(shuō)明)4、下面是“過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.已知:⊙O和⊙O外一點(diǎn)P.求作:過(guò)點(diǎn)P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點(diǎn)O和點(diǎn)P為圓心,大于的長(zhǎng)半徑作弧,兩弧相交于M,N兩點(diǎn);(3)作直線MN,交OP于點(diǎn)C;(4)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn);(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點(diǎn)A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點(diǎn)A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.5、如圖,AB是的直徑,CD是的一條弦,且于點(diǎn)E.(1)求證:;(2)若,,求的半徑.6、正方形綠化場(chǎng)地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱或中心對(duì)稱圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,并畫(huà)出一條對(duì)稱軸;(2)把圖③補(bǔ)成只是中心對(duì)稱圖形,并把中心標(biāo)上字母P.7、已知線段AB,用平移、旋轉(zhuǎn)、軸對(duì)稱畫(huà)出一個(gè)以AB為一邊,一個(gè)內(nèi)角是30°的菱形.(不寫(xiě)畫(huà)法,保留作圖痕跡).-參考答案-一、單選題1、C【分析】根據(jù)頻率估計(jì)概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來(lái)越大時(shí),頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率,概率的得出是在大量實(shí)驗(yàn)的基礎(chǔ)上得出的,不能單純的依靠幾次決定.2、B【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是故選B【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征,掌握關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)是解題的關(guān)鍵.3、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個(gè)正方形,右邊一個(gè)正方形.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.4、A【分析】用紅球的個(gè)數(shù)除以所有球的個(gè)數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個(gè)球,其中紅球有2個(gè),∴P(摸到紅球)=,故選:A.【點(diǎn)睛】此題主要考查概率的意義及求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【分析】過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考常考題型.6、C【分析】根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個(gè)不透明的盒子中裝有12個(gè)白球,4個(gè)黃球,從中隨機(jī)摸出一個(gè)球,所有等可能的情況16種,其中摸出的一個(gè)球是黃球的情況有4種,∴隨機(jī)抽取一個(gè)球是黃球的概率是.故選C.【點(diǎn)睛】本題主要考查了概率公式的應(yīng)用,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.7、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個(gè)幾何體的左視圖是選項(xiàng)D,故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.8、A【詳解】解:A、既是軸對(duì)稱圖形又是中心對(duì)稱圖形,此項(xiàng)符合題意;B、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,此項(xiàng)不符題意;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;故選:A.【點(diǎn)睛】本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形,熟記中心對(duì)稱圖形的定義(在平面內(nèi),把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個(gè)圖形重合,那么這兩個(gè)圖形互為中心對(duì)稱圖形)和軸對(duì)稱圖形的定義(如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個(gè)圖形叫做軸對(duì)稱圖形)是解題關(guān)鍵.二、填空題1、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過(guò)三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個(gè)結(jié)論;運(yùn)用對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點(diǎn)P,連接PA,則PA+PC≥AC,當(dāng)PC最大時(shí),PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時(shí),PA最小,計(jì)算即可.【詳解】∵GH是⊙O的切線,M為切點(diǎn),且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無(wú)法確定HD=2BG,故①錯(cuò)誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對(duì)角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上,故③正確;∵正方形ABCD的邊長(zhǎng)為1,∴=1=,∠GAH=90°,AC=取GH的中點(diǎn)P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時(shí),有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時(shí),PA最小,∵直徑是圓中最大的弦,∴PC=1時(shí),PA最小,∴當(dāng)A,P,C三點(diǎn)共線時(shí),且PC最大時(shí),PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點(diǎn)睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點(diǎn)共圓,正方形的性質(zhì),熟練掌握?qǐng)A的性質(zhì),靈活運(yùn)用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.2、在⊙A上【分析】先根據(jù)兩點(diǎn)間的距離公式計(jì)算出OA,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法判斷點(diǎn)O與⊙A的位置關(guān)系.【詳解】解:∵點(diǎn)A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點(diǎn)O在⊙A上.故答案為:在⊙A上.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,當(dāng)點(diǎn)P在圓外?d>r;當(dāng)點(diǎn)P在圓上?d=r;當(dāng)點(diǎn)P在圓內(nèi)?d<r.3、【分析】陰影部分的面積等于等邊三角形的面積減去三個(gè)扇形面積,而這三個(gè)扇形拼起來(lái)正好是一個(gè)半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長(zhǎng),從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點(diǎn)是BC的中點(diǎn)∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點(diǎn)睛】本題是求組合圖形的面積,扇形面積及三角形面積的計(jì)算.關(guān)鍵是把不規(guī)則圖形面積通過(guò)割補(bǔ)轉(zhuǎn)化為規(guī)則圖形的面積計(jì)算.4、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動(dòng)軌跡.5、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長(zhǎng)公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式.6、110°【分析】根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對(duì)角互補(bǔ),∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形互補(bǔ)的性質(zhì),熟練掌握并運(yùn)用性質(zhì)是解題的關(guān)鍵.7、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)作圖見(jiàn)解析,、;(2)【分析】(1)將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得,根據(jù)點(diǎn)A、B、C坐標(biāo),即可確定出點(diǎn)、的坐標(biāo);(2)根據(jù)勾股定理求出AB的長(zhǎng),由扇形面積公式即可得出答案.【詳解】(1)將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得如圖所示:∴、;(2)由圖可知:,∴線段AB在旋轉(zhuǎn)過(guò)程中掃過(guò)的面積為.【點(diǎn)睛】本題考查作旋轉(zhuǎn)圖形以及扇形的面積公式,掌握旋轉(zhuǎn)的性質(zhì)及扇形的面積公式是解題的關(guān)鍵.2、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)因?yàn)锳B=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長(zhǎng)為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結(jié)論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.3、(1)S△ABC=20;(2)見(jiàn)解析;(3)見(jiàn)解析.【分析】(1)設(shè)⊙O的半徑為r,由切線長(zhǎng)定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進(jìn)而求得結(jié)果;(2)根據(jù)切線長(zhǎng)定理可證明甲和乙兩個(gè)三角形全等,丙丁兩個(gè)三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以O(shè)P為邊放在右側(cè),圍成矩形的邊長(zhǎng)是4和5;(3)可先計(jì)算∠AFB=135°,根據(jù)“定弦對(duì)定角”作F點(diǎn)的軌跡,根據(jù)切線性質(zhì),過(guò)點(diǎn)F作AB的垂線,再根據(jù)直徑所對(duì)的圓周角是90°,確定點(diǎn)C.【詳解】解:(1)如圖1,設(shè)⊙O的半徑為r,連接OE,OF,∵⊙O內(nèi)切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設(shè)△ABC的內(nèi)切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點(diǎn)E,②以E為圓心,AE為半徑作圓,③過(guò)點(diǎn)D作AB的垂線,交圓于F,④連接EF并延長(zhǎng)交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點(diǎn)睛】本題考查三角形的內(nèi)切圓性質(zhì)、切線長(zhǎng)定理、勾股定理、矩形的判定與性質(zhì)、尺規(guī)作圖-作垂線,熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用是解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論