版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,為正六邊形邊上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿六邊形的邊以1cm/s的速度按逆時(shí)針?lè)较蜻\(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)停止.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,以點(diǎn)、、為頂點(diǎn)的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.2、下列判斷正確的個(gè)數(shù)有()①直徑是圓中最大的弦;②長(zhǎng)度相等的兩條弧一定是等??;③半徑相等的兩個(gè)圓是等圓;④弧分優(yōu)弧和劣弧;⑤同一條弦所對(duì)的兩條弧一定是等?。瓵.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,點(diǎn)A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°4、下列汽車標(biāo)志中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.5、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°6、如圖,AB是的直徑,弦CD交AB于點(diǎn)P,,,,則CD的長(zhǎng)為()A. B. C. D.87、若的圓心角所對(duì)的弧長(zhǎng)是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.48、在中,,,給出條件:①;②;③外接圓半徑為4.請(qǐng)?jiān)诮o出的3個(gè)條件中選取一個(gè),使得BC的長(zhǎng)唯一.可以選取的是()A.① B.② C.③ D.①或③第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”.當(dāng),時(shí),則陰影部分的面積為_(kāi)_________.2、如圖,在平面直角坐標(biāo)系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進(jìn)行下去,得到Rt△OA2A3,Rt△OA3A4…,若點(diǎn)A0的坐標(biāo)是(1,0),則點(diǎn)A2021的橫坐標(biāo)是___________.3、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,那么BM=______________.4、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過(guò)多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).5、如圖,正三角形ABC的邊長(zhǎng)為,D、E、F分別為BC,CA,AB的中點(diǎn),以A,B,C三點(diǎn)為圓心,長(zhǎng)為半徑作圓,圖中陰影部分面積為_(kāi)_____.6、如圖,在⊙O中,A,B,C是⊙O上三點(diǎn),如果∠AOB=70o,那么∠C的度數(shù)為_(kāi)______.7、一個(gè)不透明的袋子中放有3個(gè)紅球和5個(gè)白球,這些球除顏色外均相同,隨機(jī)從袋子中摸出一球,摸到紅球的概率為_(kāi)____.三、解答題(7小題,每小題0分,共計(jì)0分)1、隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:(1)這次活動(dòng)共調(diào)查了______人,并補(bǔ)充完整條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為_(kāi)_____;(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹(shù)狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.2、為堅(jiān)持“五育并舉”,落實(shí)立德樹(shù)人根本任務(wù),教育部出臺(tái)了“五項(xiàng)管理”舉措.我校對(duì)九年級(jí)部分家長(zhǎng)就“五項(xiàng)管理”知曉情況作調(diào)查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級(jí)組長(zhǎng)將調(diào)查情況制成了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:(1)共調(diào)查了多少名家長(zhǎng)?寫出圖2中選項(xiàng)所對(duì)應(yīng)的圓心角,并補(bǔ)齊條形統(tǒng)計(jì)圖;(2)我校九年級(jí)共有450名家長(zhǎng),估計(jì)九年級(jí)“不知曉五項(xiàng)管理”舉措的家長(zhǎng)有多少人;(3)已知選項(xiàng)中男女家長(zhǎng)數(shù)相同,若從選項(xiàng)家長(zhǎng)中隨機(jī)抽取2名家長(zhǎng)參加“家校共育”座談會(huì),請(qǐng)用列表或畫樹(shù)狀圖的方法,求抽取家長(zhǎng)都是男家長(zhǎng)的概率.3、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過(guò)點(diǎn)C作切線,交OD延長(zhǎng)線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.4、如圖,已知為的直徑,切于點(diǎn)C,交的延長(zhǎng)線于點(diǎn)D,且.(1)求的大??;(2)若,求的長(zhǎng).5、新高考“3+1+2”是指:3,語(yǔ)數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個(gè)游戲:他拿來(lái)四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機(jī)抽取兩張,請(qǐng)你用畫樹(shù)狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.6、正方形綠化場(chǎng)地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱或中心對(duì)稱圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,并畫出一條對(duì)稱軸;(2)把圖③補(bǔ)成只是中心對(duì)稱圖形,并把中心標(biāo)上字母P.7、如圖1,在中,,,點(diǎn)D為AB邊上一點(diǎn).(1)若,則______;(2)如圖2,將線段CD繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過(guò)點(diǎn)A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.-參考答案-一、單選題1、A【分析】設(shè)正六邊形的邊長(zhǎng)為1,當(dāng)在上時(shí),過(guò)作于而求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),延長(zhǎng)交于點(diǎn)過(guò)作于并求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),連接并求解此時(shí)的函數(shù)解析式,由正六邊形的對(duì)稱性可得:在上的圖象與在上的圖象是對(duì)稱的,在上的圖象與在上的圖象是對(duì)稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長(zhǎng)為1,當(dāng)在上時(shí),過(guò)作于而當(dāng)在上時(shí),延長(zhǎng)交于點(diǎn)過(guò)作于同理:則為等邊三角形,當(dāng)在上時(shí),連接由正六邊形的性質(zhì)可得:由正六邊形的對(duì)稱性可得:而由正六邊形的對(duì)稱性可得:在上的圖象與在上的圖象是對(duì)稱的,在上的圖象與在上的圖象是對(duì)稱的,所以符合題意的是A,故選A【點(diǎn)睛】本題考查的是動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.2、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長(zhǎng)度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個(gè)圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對(duì)的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點(diǎn)睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.3、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點(diǎn)睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.4、C【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.5、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點(diǎn)睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.6、A【分析】過(guò)點(diǎn)作于點(diǎn),連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長(zhǎng).【詳解】解:如圖,過(guò)點(diǎn)作于點(diǎn),連接,AB是的直徑,,,,在中,故選A【點(diǎn)睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.7、C【分析】先設(shè)半徑為r,再根據(jù)弧長(zhǎng)公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長(zhǎng)為2πr,120°所對(duì)應(yīng)的弧長(zhǎng)為解得r=3故選C【點(diǎn)睛】本題考查弧長(zhǎng)計(jì)算,牢記弧長(zhǎng)公式是本題關(guān)鍵.8、B【分析】畫出圖形,作,交BE于點(diǎn)D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長(zhǎng),再由AD和AC的長(zhǎng)作比較即可判斷①②;由前面所求的AD的長(zhǎng)和AB的長(zhǎng),結(jié)合該三角形外接圓的半徑長(zhǎng),即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點(diǎn)即為C點(diǎn),為兩點(diǎn)不唯一,可判斷其不符合題意.【詳解】如圖,,,點(diǎn)C在射線上.作,交BE于點(diǎn)D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點(diǎn)C即是.∴,使得BC的長(zhǎng)唯一成立,故②符合題意;∵,,∴存在兩個(gè)點(diǎn)C使的外接圓的半徑等于4,兩個(gè)外接圓圓心分別在AB的上、下兩側(cè),如圖,點(diǎn)C和即為使的外接圓的半徑等于4的點(diǎn).故③不符合題意.故選B.【點(diǎn)睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.二、填空題1、【分析】根據(jù)陰影部分面積等于以為直徑的2個(gè)半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點(diǎn)睛】本題考查了勾股定理,求扇形面積,直徑所對(duì)的圓周角是直角,掌握?qǐng)A周角定理是解題的關(guān)鍵.2、22020【分析】根據(jù),,點(diǎn)的坐標(biāo)是,得,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是-,同理可得點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,依次進(jìn)行下去,可得點(diǎn)的橫坐標(biāo),進(jìn)而求得的橫坐標(biāo).【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點(diǎn)A0的坐標(biāo)是(1,0),∴OA0=1,∴點(diǎn)A1的橫坐標(biāo)是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點(diǎn)A2的橫坐標(biāo)是-OA2=-2=-21,依次進(jìn)行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點(diǎn)A3的橫坐標(biāo)是﹣2OA2=﹣8=﹣23,點(diǎn)A4的橫坐標(biāo)是﹣8=﹣23,點(diǎn)A5的橫坐標(biāo)是OA5=×2OA4=2OA3=4OA2=16=24,點(diǎn)A6的橫坐標(biāo)是2OA5=2×2OA4=23OA3=64=26,點(diǎn)A7的橫坐標(biāo)是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點(diǎn)A2021的橫坐標(biāo)與的坐標(biāo)規(guī)律一致是22020.故答案為:22020.【點(diǎn)睛】本題考查了規(guī)律型——點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是理解動(dòng)點(diǎn)的運(yùn)動(dòng)過(guò)程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點(diǎn)A3n在軸上,且坐標(biāo)為.3、【分析】設(shè)BN與AC交于D,過(guò)M作MF⊥BA于F,過(guò)M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設(shè)BN與AC交于D,過(guò)M作MF⊥BA于F,過(guò)M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵M(jìn)F⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點(diǎn)睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關(guān)鍵是證明∠CDB=90°.4、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值5、【分析】陰影部分的面積等于等邊三角形的面積減去三個(gè)扇形面積,而這三個(gè)扇形拼起來(lái)正好是一個(gè)半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長(zhǎng),從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點(diǎn)是BC的中點(diǎn)∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點(diǎn)睛】本題是求組合圖形的面積,扇形面積及三角形面積的計(jì)算.關(guān)鍵是把不規(guī)則圖形面積通過(guò)割補(bǔ)轉(zhuǎn)化為規(guī)則圖形的面積計(jì)算.6、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對(duì),且,,故答案為:.【點(diǎn)睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握?qǐng)A周角定理.7、【分析】讓紅球的個(gè)數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個(gè)數(shù)為3個(gè),球的總數(shù)為3+5=8(個(gè)),∴摸到紅球的概率為,故答案為:.【點(diǎn)睛】本題考查了概率公式的應(yīng)用,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題1、(1)200;補(bǔ)圖見(jiàn)解析;(2)81°;(3)【分析】(1)根據(jù)使用支付方式為銀行卡的占比為15%,人數(shù)為30人即可求得總?cè)藬?shù),根據(jù)微信支付所占的百分比為乘以總?cè)藬?shù)即可求得,根據(jù)總?cè)藬?shù)減去微信支付,銀行卡,現(xiàn)金,其他方式支付的人數(shù)即可求得支付寶支付的人數(shù);(2)先求得支付寶支付的人數(shù)所占比乘以360°即可求得扇形圓心角的度數(shù);(3)根據(jù)列表法求概率即可.【詳解】解:(1)(人)故答案為:200其中使用微信支付的有:(人)使用支付寶支付的有:(人)(2)故答案為:81°(3)將微信記為A,支付寶記為B,銀行卡記為C,列表格如下:ABCABC共有9種等可能性的結(jié)果,其中兩人恰好選擇同一種支付方式的結(jié)果有3種,則P(兩人恰好選擇同一種支付方式)【點(diǎn)睛】本題考查了扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖信息關(guān)聯(lián),求條形統(tǒng)計(jì)圖某項(xiàng)數(shù)據(jù),求扇形統(tǒng)計(jì)圖圓心角,列表法求概率,掌握以上知識(shí)是解題的關(guān)鍵.2、(1)50,,圖見(jiàn)解析(2)36(3)【分析】(1)利用A選項(xiàng)的人數(shù)和A選項(xiàng)所占的百分?jǐn)?shù)求解調(diào)查的家長(zhǎng)人數(shù),再由B選項(xiàng)所占的百分?jǐn)?shù)求解B選項(xiàng)的人數(shù),進(jìn)而可求出D選項(xiàng)的人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖,再求出D選項(xiàng)所占的百分?jǐn)?shù)即可求得D選項(xiàng)所對(duì)應(yīng)的圓心角;(2)根據(jù)家長(zhǎng)總?cè)藬?shù)乘以D選項(xiàng)所占的百分?jǐn)?shù)即可求解;(3)根據(jù)(1)中求出的D選項(xiàng)人數(shù)可求得男女家長(zhǎng)數(shù),再用列表法求解即可.(1)解:家長(zhǎng)總?cè)藬?shù):11÷22%=50(人),B選項(xiàng)人數(shù):50×40%=20(人),D選項(xiàng)人數(shù):50-11-20-15=4(人),D選項(xiàng)所占的百分?jǐn)?shù)為4÷50=8%,D選項(xiàng)所對(duì)的圓心角為360°×8%=28.8°,答:一共調(diào)查了50名家長(zhǎng),選項(xiàng)圓心角為,補(bǔ)全條形統(tǒng)計(jì)圖如圖:(2)解:450×8%=36(人),答:估計(jì)九年級(jí)“不知曉五項(xiàng)管理”舉措的家長(zhǎng)有36人;(3)解:D選項(xiàng)共4人,則男女家長(zhǎng)各2人,從中抽取2人,畫樹(shù)狀圖為:由圖可知,一共有12種等可能的結(jié)果,其中都是男家長(zhǎng)的有2種,∴抽取家長(zhǎng)都是男家長(zhǎng)的概率是.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的信息關(guān)聯(lián)、用樣本估計(jì)總體、用列表或畫樹(shù)狀圖法求概率,能從條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖中獲取有效信息是解答的關(guān)鍵.3、(1)見(jiàn)解析(2)見(jiàn)解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說(shuō)明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說(shuō)明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識(shí)點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.4、(1)45°(2)【分析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)圓周角定理得到∠DOC=2∠CAD,進(jìn)而證明∠D=∠DOC,根據(jù)等腰直角三角形的性質(zhì)求出∠D的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省葫蘆島市2025-2026學(xué)年高二上學(xué)期1月期末考試歷史試卷(含答案)
- 湖南省炎德英才大聯(lián)考2025-2026學(xué)年高二上學(xué)期期末試卷語(yǔ)文試題(含答案)
- 飛行員招飛培訓(xùn)課件
- 鋼結(jié)構(gòu)疲勞設(shè)計(jì)技術(shù)要點(diǎn)
- 飛機(jī)結(jié)構(gòu)技術(shù)
- 2026云南臨滄滄源佤族自治縣職業(yè)技術(shù)學(xué)校宿舍管理員招聘1人考試備考題庫(kù)及答案解析
- 飛機(jī)客艙安全
- 疫情-小區(qū)活動(dòng)策劃方案(3篇)
- 飛機(jī)安全性科普
- 裝潢水路施工方案(3篇)
- 江蘇省南通市如皋市創(chuàng)新班2025-2026學(xué)年高一上學(xué)期期末數(shù)學(xué)試題+答案
- 學(xué)堂在線 雨課堂 學(xué)堂云 實(shí)繩結(jié)技術(shù) 章節(jié)測(cè)試答案
- 不良貸款清收經(jīng)驗(yàn)分享
- 小美滿合唱五線譜總譜
- 《陸上風(fēng)電場(chǎng)工程設(shè)計(jì)概算編制規(guī)定及費(fèi)用標(biāo)準(zhǔn)》(NB-T 31011-2019)
- 介入導(dǎo)管室有關(guān)知識(shí)課件
- 騰訊云智慧機(jī)場(chǎng)建設(shè)方案
- 2024年黑龍江哈爾濱“丁香人才周”哈爾濱市生態(tài)環(huán)境局所屬事業(yè)單位招聘筆試沖刺題
- 推廣經(jīng)理半年工作計(jì)劃
- 110kV線路運(yùn)維方案
- 智能化弱電工程常見(jiàn)質(zhì)量通病的避免方法
評(píng)論
0/150
提交評(píng)論