江西省豐城市中考數(shù)學高頻難、易錯點題附完整答案詳解(考點梳理)_第1頁
江西省豐城市中考數(shù)學高頻難、易錯點題附完整答案詳解(考點梳理)_第2頁
江西省豐城市中考數(shù)學高頻難、易錯點題附完整答案詳解(考點梳理)_第3頁
江西省豐城市中考數(shù)學高頻難、易錯點題附完整答案詳解(考點梳理)_第4頁
江西省豐城市中考數(shù)學高頻難、易錯點題附完整答案詳解(考點梳理)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省豐城市中考數(shù)學高頻難、易錯點題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖1,矩形中,點為的中點,點沿從點運動到點,設,兩點間的距離為,,圖2是點運動時隨變化的關系圖象,則的長為(

)A. B. C. D.2、從下列命題中,隨機抽取一個是真命題的概率是()(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)弧長是,面積是的扇形的圓心角是.A. B. C. D.13、若關于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(1,1),且當x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.4、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.875、從下列命題中,隨機抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.1二、多選題(5小題,每小題3分,共計15分)1、下列方程一定不是一元二次方程的是(

)A. B.C. D.2、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結(jié)論中,正確的是(

)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD3、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°4、在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=bx+a的圖象不可能是()A. B.C. D.5、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結(jié)論中正確的是(

)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設AB=x米,根據(jù)題意可列出方程的為_________.2、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.3、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____4、五張背面完全相同的卡片上分別寫有、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,抽到有理數(shù)的概率是______.5、如圖,在中,的半徑為點是邊上的動點,過點作的一條切線(其中點為切點),則線段長度的最小值為____.四、解答題(6小題,每小題10分,共計60分)1、若二次函數(shù)圖像經(jīng)過,兩點,求、的值.2、已知關于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.3、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場調(diào)研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?4、小敏與小霞兩位同學解方程的過程如下框:小敏:兩邊同除以,得,則.小霞:移項,得,提取公因式,得.則或,解得,.你認為他們的解法是否正確?若正確請在框內(nèi)打“√”;若錯誤請在框內(nèi)打“×”,并寫出你的解答過程.5、每年九月開學前后是文具盒的銷售旺季,商場專門設置了文具盒專柜李經(jīng)理記錄了天的銷售數(shù)量和銷售單價,其中銷售單價(元/個)與時間第天(為整數(shù))的數(shù)量關系如圖所示,日銷量(個)與時間第天(為整數(shù))的函數(shù)關系式為:直接寫出與的函數(shù)關系式,并注明自變量的取值范圍;設日銷售額為(元),求(元)關于(天)的函數(shù)解析式;在這天中,哪一天銷售額(元)達到最大,最大銷售額是多少元;由于需要進貨成本和人員工資等各種開支,如果每天的營業(yè)額低于元,文具盒專柜將虧損,直接寫出哪幾天文具盒專柜處于虧損狀態(tài)6、解一元二次方程(1)(2)-參考答案-一、單選題1、C【解析】【分析】先利用圖2得出當P點位于B點時和當P點位于E點時的情況,得到AB和BE之間的關系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當P點位于B點時,,即,當P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學生對函數(shù)圖象的理解與應用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關鍵是能正確理解題意,能從圖象中提取相關信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.2、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)設扇形半徑為r,圓心角為n,∵弧長是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機抽取一個是真命題的概率是,故選C.【考點】本題考查了命題的真假,概率,扇形的弧長和面積,無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.3、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象上點的坐標特征,根據(jù)題意得關于a的不等式組是解題的關鍵.4、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.二、多選題1、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關鍵.2、ABC【解析】【分析】根據(jù)垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據(jù)條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關鍵是掌握垂徑定理的應用.3、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質(zhì)的綜合應用,在本題中借用切線的性質(zhì),求得相應角的度數(shù)是解題的關鍵.4、ABD【解析】【分析】首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進而運用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.【詳解】A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,對稱軸x=<0,應在y軸的左側(cè),圖形錯誤,故符合題意.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線來說,圖象應開口向下,故不合題意,圖形錯誤,故符合題意.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線來說,圖象開口向下,對稱軸x=位于y軸的右側(cè),圖形正確,故不符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,圖象開口向下,a<0,故不合題意,圖形錯誤,故符合題意.故選ABD.【考點】主要考查了一次函數(shù)、二次函數(shù)圖象的性質(zhì)及其應用問題;解題的方法是首先根據(jù)其中一次函數(shù)圖象確定a、b的符號,進而判斷另一個函數(shù)的圖象是否符合題意;解題的關鍵是靈活運用一次函數(shù)、二次函數(shù)圖象的性質(zhì)來分析、判斷、解答.5、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質(zhì)與圖象的知識,解答本題時需注重運用數(shù)形結(jié)合的思想.三、填空題1、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點】本題主要考查了一元二次方程的實際問題,解決問題的關鍵是通過圖形找到對應關系量,根據(jù)等量關系式列方程.2、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.3、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.4、##0.4【解析】【分析】根據(jù)題意可知有理數(shù)有-31、,共2個,根據(jù)概率公式即可求解【詳解】解:在、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數(shù)中,-31、是有理數(shù),∴任意取一張,抽到有理數(shù)的概率是故答案為:【考點】本題考查了實數(shù)的分類,根據(jù)概率公式求概率,理解題意是解題的關鍵.5、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當OP⊥AB時,PQ最短;在中運用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長,然后再運用等面積法求得OP的長,最后運用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識點,此正確作出輔助線、根據(jù)勾股定理確定當PO⊥AB時、線段PQ最短是解答本題的關鍵.四、解答題1、b=-3,c=-4.【解析】【分析】將,代入中,求解二元一次方程組即可解題.【詳解】解:將,代入中得,解得:∴b=-3,c=-4.【考點】本題考查了含參數(shù)的二次函數(shù)的求解,屬于簡單題,熟悉求解二元一次方程組的方法是解題關鍵.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關系來確定二次函數(shù)的最值是解本題的關鍵.3、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)表達式即可.(2)根據(jù)(1)中列出函數(shù)關系式,配方后依據(jù)二次函數(shù)的性質(zhì)求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價為70元時,獲得最大利潤;最大利潤為4000元.【考點】本題考查的是二次函數(shù)在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,找到等量關系,求得二次函數(shù)解析式.4、兩位同學的解法都錯誤,正確過程見解析【解析】【分析】根據(jù)因式分解法解一元二次方程【詳解】解:小敏:兩邊同除以,得,則.(×)小霞:移項,得,提取公因式,得.則或,解得,.(×)正確解答:移項,得,提取公因式,得,去括號,得,則或,解得,.【考點】本題考查因式分解法解一元二次方程,掌握因式分解的技巧準確計算是解題關鍵.5、(1)y=,(2)w=,在這15天中,第9天銷售額達到最大,最大銷售額是3600元,(3)第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【解析】【分析】(1)用待定系數(shù)法可求與的函數(shù)關系式;(2)利用總銷售額=銷售單價×銷售量,分三種情況,找到(元)關于(天)的函數(shù)解析式,然后根據(jù)函數(shù)的性質(zhì)即可找到最大值.(3)先根據(jù)第(2)問的結(jié)論判斷出在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論