常用邏輯用語(學生版)_第1頁
常用邏輯用語(學生版)_第2頁
常用邏輯用語(學生版)_第3頁
常用邏輯用語(學生版)_第4頁
常用邏輯用語(學生版)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題02常用遨輯用語(核心考點精講精練)

1.4年真題考點分布

4年考情

考題示例考點分析關聯(lián)考點

2023年新I卷,第7題,5分充分條件與必要條件等差數(shù)列通項公式及前n項和

2.命題規(guī)律及備考策略

【命題規(guī)律】本節(jié)內容是新高考卷的選考內容,具體視命題情況而定,常作為知識點載體的形式考查,例

如2023年新I卷第7題以數(shù)列知識點作為載體,難度隨載體知識點而定,分值為5分

【備考策略】1.理解、掌握充分條件、必要條件、充要條件

2.能正確從集合角度理解充分條件與必要條件的判斷及邏輯關系

3.能理解全稱量詞與存在量詞的意義

4.能正確對全稱量詞命題和存在量詞命題進行否定

【命題預測】本節(jié)內容常作為載體考查充分條件與必要條件,需對考綱內知識點熟練掌握;全稱量詞命題

和存在量詞命題的否定也是高考復習和考查的重點。

考點梳理

(1)命題的定義

在數(shù)學中,把用語言、符號、或式子表達的,可以判斷真假的陳述語句叫做命題。

(2)真命題,假命題

判斷為真的語句叫做真命題,判斷為假的語句叫做假命題

(3)命題的一般形式

通常用“若尸,則q”的形式來表達,其中p稱為命題的條件,“稱為命題的結論。

2.充分條件與必要條件

(1)充分條件與必要條件的定義

一般地,“若p,則為真命題,是指由條件p通過推理可以得出“0

由2可推出q,記作〃nq,并且說夕是q的充分條件,“是p的必要條件。

如果”若p,則為假命題,是指由條件?不能推出結論“,記作p勢q,則p不是“的充分條件,q

不是p的必要條件。

3.充分性和必要性的關系

在“若p,則4”中,

若:pnq,則p是q的充分條件,4是P的必要條件

若:qnp,則q是2的充分條件,p是q的必要條件

也就是說:在“若夕,則q”中,

條件n結論,充分性成立;

結論n條件,必要性成立

4.充要條件

(1)充要條件的定義

若有pnq,又有q=>p,就記作p=則p是q的充分必要條件,簡稱充要條件。

(2)充分條件、必要條件的四種類型

若pnq,qnp,則p是<7的充要條件

若pnq,q書p,則p是“的充分不必要條件

若p書q,qnp,則p是4的必要不充分條件

若p書q,q書p,則p是<7的既不充分也不必要條件

5.集合中的包含關系在判斷條件關系中的應用

設命題p對應集合A,命題q對應集合B

若A7B,即pnq,2是q的充分條件(充分性成立)

若AqB,即qnp,2是4的必要條件(必要性成立)

若A砥8,即q書p,p是q的充分不必要條件

若A?B,即〃#>q,q=p,p是q的必要不充分條件

若A=5,即〃=>q,q=p,2是q的充要條件

6.全稱量詞與全稱量詞命題

(1)全稱量詞

短語“所有的”“任意一個”在邏輯中通常叫做全稱量詞,并用符號“V”表示

(2)全稱量詞命題

含有全稱量詞的命題,叫做全稱量詞命題

(3)全稱量詞命題的符號及記法

記作:VxeM,p(x)

讀作:對任意x屬于有p(x)成立

7.存在量詞與存在量詞命題

(1)存在量詞

短語“存在一個”“至少有一個”在邏輯中通常叫做存在量詞,并用符號“三”表示

(2)存在量詞命題

含有存在量詞的命題,叫做存在量詞命題

(3)存在量詞命題的符號及記法

記法:,p(x)

讀法:存在M中的元素x,使得p(x)成立

8.全稱量詞命題和存在量詞命題的否定

(1)全稱量詞命題的否定

全稱量詞命題:VxeM,p(x)

否定為:3x&M,->/?(%)

(2)存在量詞命題的否定

存在量詞命題:3x^M,p(x)

否定為:VxeM,

考點一、判斷命題的條件

☆典例引領

1.(2023?新高考I卷高考真題)記S"為數(shù)列{0}的前”項和,設甲:{%}為等差數(shù)列;乙:{%}為等差數(shù)

n

列,則()

A.甲是乙的充分條件但不是必要條件

B.甲是乙的必要條件但不是充分條件

C.甲是乙的充要條件

D.甲既不是乙的充分條件也不是乙的必要條件

2.(2023?重慶?統(tǒng)考模擬預測)若〃是q的必要不充分條件,q的充要條件是廣,則廠是°的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

3.(2023?遼寧?校聯(lián)考二模)"a=1"是"函數(shù)=坨(+4-彳)是奇函數(shù)"的().

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

即時檢測

1.(2023?山東青島?統(tǒng)考模擬預測)"g]>g]"是"a<6+l"的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

2.(2023?浙江溫州?統(tǒng)考二模)已知〃力為實數(shù),…+1=0,"+/=0,則,是0的()

A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件

hrnh

3.(2023?湖北?校聯(lián)考模擬預測)已知根〉0,貝『匕>b>0〃是"——>—〃的()

a+ma

A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

TTKTT

4.(2023?山東臨沂?統(tǒng)考一模)",=M±§(AeZ)"是"。=不仕eZ)”的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

5.(2023?山東荷澤?統(tǒng)考二模)"根=-1"是"直線4:儂+2y+l=。與直線+沖+:=0平行”的()

A.充要條件B.必要不充分條件

C.充分不必要條件D.既不充分也不必要

6.(2023?遼寧?校聯(lián)考二模)已知xeR,若,則p是[的().

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

考點二、根據(jù)命題的條件求參數(shù)值或范圍

☆典例引領

1.(2023?福建福州?高二福州二中??茧A段練習)設R4尤-3<1;q:x-(2a+l)<0,若p是q的充分不必要

條件,則()

A.a>0B.a>lC.?>0D.a>l

2.(2023?全國?高三專題練習)已知條件P:-1<X<1,q:x>m,若P是夕的充分不必要條件,則實數(shù)加

的取值范圍是()

A.[-1,+<?)B.(-oo,-l)C.(-1.0)D.(-oo,-l]

_即_時__檢__測_

1.(2023?全國?高三專題練習)"xNa〃是〃、之2〃的必要不充分條件,則〃的取值范圍為()

A.(3,+oo)B.(-00,2)C.(-00,2]D.[。,+切)

2.(2023?海南???校考模擬預測)已知集合尸=Hx2-2x<0},Q=卜|^/^々<l},則尸Q=P的充要條件

是()

A.0<0<1B.0<a<lC.0<fl<lD.0<<7<1

考點三、判斷全稱命題和特稱命題真假

☆典例引領

1.(2023?全國?高三專題練習)下列命題中既是全稱量詞命題,又是真命題的是()

A.菱形的四條邊都相等B.N,使2x為偶數(shù)

C.VxeR,%2+2x+l>0D.兀是無理數(shù)

2.(2023春?黑龍江哈爾濱?高三哈九中??奸_學考試)下列命題中,真命題是()

4

A.叫eR,xJ<0

B.Vx>0,1g尤>0

c.是“x>l”的必要不充分條件

D.命題“Vx20,1£111%*5出工”的否定為“土0<。,tanXoWsin%”

☆即時檢測

1.(2023?全國?高三專題練習)下列命題中,真命題是()

A./>1”是“〃匕〉1”的必要條件B.VXGR,ex>0

C.VxeR,2r>x2D.a+6=0的充要條件是f=一1

b

2.(2023?全國?高三專題練習)下列命題中的假命題是()

A.Bx>0,x2>x3B.Vxe7?,lnx>0

C.3xeR,sinx>-lD.Vxe7?,2X>0

考點四、含有一個量詞命題的否定

典例引領

1.(2023?黑龍江哈爾濱?哈九中??寄M預測)命題p:Vxe{x|l<尤<5},r尤>5,則命題p的否定是()

2

A.三元e{x|14xW5},x-4x<5B.任{x|14尤<5},彳2_4尤45

C.(x|l<x<5},尤2_4彳45D.Vxe{x|l<%<5),_?_4尤45

2.(2023?遼寧大連?統(tǒng)考三模)設命題P:3x0>0,sinx0>l+cosx0,則“為

A.Vx<0,sinx>l+cosxB.Vx>0,sinx<l+cosx

C.Vx>0,sinx<l+cosxD.Vx<0,sinx<l+cosx

即時檢測

1.(2023春?重慶渝中?高三重慶巴蜀中學??茧A段練習)命題:"Vxe[l,2],2丁_3?0”的否定是()

A.V尤任[1,2],2%2-3>0B.Vxe[l,2],2x2-3<0

C.3x0G[1,2],2XQ—3<0D.3%0i[1,2],2x;—3<0

2.(2023?福建漳州?統(tǒng)考二模)已知命題p:Vx>0,ln(l+x)>x-y,則命題p的否定為()

r2r2

A.Vx>0,ln(l+x)<x-5B.3x>0,ln(l+x)<x~~^

xx

C.Vx<0,ln(l+x)<x~^D.3x<0,ln(l+x)<x~~^

3.(2023?河北石家莊?正定中學??寄M預測)已知命題P:玉eR,tanx<7i或e-Nmz,則命題〃的否定為

()

A.mxwR,tanxN兀或e"2<兀

x+2

B.VXGR,tanx〈兀且e>兀

x+2

C.3xGR,tanx<九且e>兀

x+2

D.VxGR,tanx>TCe<TI

考點五、根據(jù)全稱命題、特稱命題真假求參數(shù)值或范圍

。典例引領1.(2023?重慶?統(tǒng)考模擬預測)命題"-2Vx<3,尤2-2aV?!笔钦婷}的一個必要不充

分條件是()

9

A.a>\B.a>-C.a>5D.a<4

2

2.(2023?遼寧大連?大連二十四中??寄M預測)命題Fx>0,依2+x+i<o"為假命題,則命題成立的充分

不必要條件是()

A.a>--B.<7>0C.a>lD.a<1

4

即時檢測

1.(2023?黑龍江哈爾濱?哈九中??级#┟}"Vxe[l,2],/一.三。,,是真命題的充要條件是()

A.a>4B.a>4C.a<1D.a>l

2.(2023?江蘇淮安?江蘇省旺胎中學??寄M預測)已矢口玉c{xl-l<x<3},一一a-2Mo.若p為假命題,則

。的取值范圍為()

A.{a\a<-2}B,{a|a<-1}C.{ala<7)D,{a|a<0}

考點六、常用邏輯用語多選題

☆典例引領

1.(2023秋?廣東廣州?高三統(tǒng)考階段練習)下列選項正確的有()

A.命題丁+2彳-3<0"的否定是:"3x>l,X2+2X-3>0"

B.命題d+2x-3<0"的否定是:"BxVl,x2+2x-3>0"

JT1

c.a=—+2kn(k£Z)是sina=彳的充分不必要條件

62

|JT

D.5皿&=彳是&=7+2反/€2)的必要不充分條件

26

2.(2023?全國?高三專題練習)下列命題中,是真命題的有()

A.命題"x=l"是"尤2_3彳+2=0”的充分不必要條件

B.命題p:VxwR,/+工+1N0,貝1j「p:lxwR,無2+x+l=0

C.命題"xw-l"是"--I?0"的充分不必要條件

D."尤>2"是"Y一3x+2>0"的充分不必要條件

即時檢測

1.(2023?全國?高三專題練習)下列命題是真命題的是()

A."XH1"是"|尤卜1"的必要不充分條件

B.若x+yN6,則x,y中至少有一個大于3

C.VxeR,的否定是玉eR,2X<x2

D.已知P:*<0,X2-X-2<0,則F:VX>0,X2-X-2>0

2.(2023?全國?高三專題練習)下列說法正確的是()

A.命題“VxeR,/>-1"的否定是"HxeR,尤

B.命題3,+co),/49"的否定是"Vxe(—3,4<?),x2>9"

C.是"x>y”的必要條件.

D."m<0"是"關于x的方程好一2了+m=o有一正一負根”的充要條件

好題沖關

【基礎過關】

1.(2023?遼寧大連?統(tǒng)考三模)設命題P:3x0>0,sinx0>l+cosx0,則“為

A.Vx<0,sinx>l+cosxB.Vx>0,sinx<l+cosx

C.Vx>0,sinx<l+cosxD.Vx<0,sinx<l+cosx

2.(2023?海南省直轄縣級單位?統(tǒng)考二模)命題“*wR,f=i,,的否定形式是()

A.HXGR,XW1或xW-lB.3XGR,XW1且xW-l

C.VXGR,xwl或xw-lD.VXGR,xwl且

3.(2023?廣東江門?統(tǒng)考一模)命題“X/XEQ,無2_5W0”的否定為()

22

A.X-5=0B.VXGQ,X-5=0

C.VxgQ,X2-5=0D.SxeQ,x2-5=0

4.(2023?安徽蚌埠?統(tǒng)考三模)已知直線*ax+2y+l=0,l2:(3-a)x-y+a=0,則條件“。=1”是心'

的()

A.充分必要條件B.充分不必要條件

C.必要不充分條件D.既不必要也不充分條件

5.(2023?江蘇鹽城?統(tǒng)考三模)已知43c。是平面四邊形,設P:AB=2DC,4:A3CD是梯形,則P是4的

條件()

A.充分不必要B.必要不充分C.充要D.既不充分也不必要

6.(2023?湖南岳陽?統(tǒng)考一模)已知直線/:y=履和圓C:(x-iy+(y—1)2=1,則“%=0”是“直線/與圓C

相切”的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分又不必要條件

7.(2023湖北武漢?統(tǒng)考三模)已知P:ab<\,q:a+b<2,則P是4的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

8.(2023?山東泰安?統(tǒng)考一模)已知相,”是兩條不重合的直線,a是一個平面,〃ua,則“加_La”是“祖_L〃”

的()

A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

9.(2023?福建泉州??寄M預測)已知命題p:VGl,2*-log2x》l,則為()

XX

A.Vx<1,2-log2x<1B.V九21,2-log2x<1

X

C.三九<1,2"—log?x<}D.3x^1,2-log2x<1

10.(2023?河北邯鄲?統(tǒng)考一模)在等差數(shù)列{%}中,“出+%=生+4””是“租=4”的()

A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件

【能力提升】

1.(2023?山東濰坊三模)已知q,beR,i為虛數(shù)單位,則“復數(shù)z=甘是純虛數(shù)”是“問+同H0”的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

2.(2023?湖北?統(tǒng)考二模)已知等差數(shù)列{%}的前a項和為S“,命題?:“%>。,&>。",命題4:“跖>?!?,則

命題p是命題q的()

A.充要條件B.充分不必要條件

C.必要不充分條件D.既不充分也不必要條件

3.(2023?河北,校聯(lián)考一模)已知復數(shù)4,Z2,是“互>1”的()

zi

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

4.(2023?湖南長沙?長沙一中??家荒#┰O“eR,z='竺,則"“>1”是“忖>君”的()

A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

5.(2023?廣東佛山?統(tǒng)考二模)記數(shù)列{%}的前,項和為S“,則"S3=3%”是“{叫為等差數(shù)列''的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

6.(2023?江蘇?統(tǒng)考三模)設向量a涉均為單位向量,貝’是=,+20”的()

A.充分不必要條件B.充要條件

C.必要不充分條件D.既不充分也不必要條件

7.(2023?安徽合肥?合肥一中??寄M預測)已知A,B,C是三個隨機事件,"A,B,C兩兩獨立”是

“P(ABC)=P(A)P(3)P(C)”的()條件

A.充分不必要B.必要不充分

C.充要D.既不充分也不必要

8.(2023?廣東廣州?廣州市培正中學校考模擬預測)已知a,6wR,貝丘-6>0是a同—瓦4>0的()

A.必要不充分條件B.充分不必要條件

C.充分必要條件D.既不充分也不必要條件

9.(2023?山東泰安?統(tǒng)考模擬預測)“。€卜2/2⑹”是“VxwR,/一S+3N0成立”的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

10.(2023?廣東茂名?統(tǒng)考二模)已知直線/:>=履與圓C:(x-2)2+(y-l)2=l,則“0<左〈乎”是“直線/與

圓C相交”的()

A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

【真題感知】

1.(2023?天津?統(tǒng)考高考真題)"/=*是“〃+。2=2"”的()

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分又不必要條件

2.(2023?全國甲卷?統(tǒng)考(理科)高考真題)"sin2a+sin2£=l”是“sina+cos£=0”的()

A.充分條件但不是必要條件B.必要條件但不是充分條件

C.充要條件D.既不是充分條件也不是必要條件

3.(2022?天津?統(tǒng)考高考真題)“尤為整數(shù)”是“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論