2025年美國AI經(jīng)濟區(qū)域分布特征及發(fā)展就緒度研究報告(英文版)-布魯金斯學(xué)會_第1頁
2025年美國AI經(jīng)濟區(qū)域分布特征及發(fā)展就緒度研究報告(英文版)-布魯金斯學(xué)會_第2頁
2025年美國AI經(jīng)濟區(qū)域分布特征及發(fā)展就緒度研究報告(英文版)-布魯金斯學(xué)會_第3頁
2025年美國AI經(jīng)濟區(qū)域分布特征及發(fā)展就緒度研究報告(英文版)-布魯金斯學(xué)會_第4頁
2025年美國AI經(jīng)濟區(qū)域分布特征及發(fā)展就緒度研究報告(英文版)-布魯金斯學(xué)會_第5頁
已閱讀5頁,還剩115頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

JULY2025

MAPPINGTHEAIECONOMY:

WHICHREGIONSAREREADYFOR

THENEXTTECHNOLOGICALLEAP?

MarkMuroandShriyaMethkupally

Tableofcontents

Executivesummary 2

Introduction 4

Background 5

Approach 6

Data 7

WhohasAItalent? 7

Whoisinnovating? 8

WhoisactuallyadoptingAI? 8

Groupingmethod 10

Findings 11

Finding#1:Inaggregate,thenation’sAIenterpriseisgrowingrapidly,thoughitremains

modestinsize 11

Finding#2:Thenation’smainAIenterpriseisconcentratedinalimitednumberofmetro

areas,butnumerousotherregionsarehometomeaningfulAIactivity 20

Finding#3:CurrentandemergingregionalAIperformanceisinformedbyvariedlocalmixes

ofsuccessfactors 26

Discussion 35

ThenationshouldbuildastrongAI-supportplatform 36

Regionsshouldengageinstrategicclusterdevelopment 40

Conclusion 53

AppendixA:Technicalbackground 54

References 60

Acknowledgements 63

Endnotes 64

MappingtheAIeconomy:Whichregionsarereadyforthenexttechnologicalleap?

MarkMuroandShriyaMethkupally

Executivesummary

ArtificialintelligenceisrapidlytransformingtheU.S.economy.However,regional

capacitiesforAItalentdevelopment,research,andenterpriseadoptiondifferdramaticallyacrossthecountry,andpolicymakershavelittleinsightonwherethesegapsare

emerging.

Thenation’sreadinesstobenefitfromAIiscriticalbecausethetechnologyisgoingto

playasignificantroleineconomicdevelopmentgivenitspotentialtodriveinnovationandproductivityineveryindustry,bothingeneralandwithinregions.

Toaddresstheseissues,thisreportmapstheunfoldingAIrevolutionacross387U.S.

metropolitanareasandassesseshowthenationandlocaleconomiesarepositionedto

create,apply,andharnessAI.ThereportfirstunderscoresAI’simplicationsfornational

andregionaleconomicdevelopment.Thenitturnstoabenchmarkingexercisethat

groups14indicatorsintothreedimensionsofregionalAIreadiness:talent,innovation,andadoption.The“talent”pillarmeasurestheflowofAI-capableworkers;“innovation”

capturesresearchandinnovationstrengths;and“adoption”chartsindustryuptake.

Employingthisframework,thereportgroupsU.S.metroareasintosixtiersofAI

economicreadinessand,insodoing,illustratesthegeographyofAIprogressasitvariesacrossthenation.Continuingapatternfroma2021Brookingsreport,1themajorAI

communitytypesrevealedbythenewclusteranalysisare:

?Superstars:TheSanFranciscoandSanJose,Calif.,metropolitanareasexhibitunmatchedstrengthacrossallthreeAIpillars(talent,innovation,andadoption).

?StarHubs:Thisgroupof28metroareasformsasecondechelonofuniformly

strongAIecosystems,balancingtop?tiertalent,research,andenterpriseuptake.

?EmergingCenters:Thisgroupof14metroareascombinestopperformanceintwopillarswithonedevelopingarea.

?FocusedMovers:These29metroareasexcelinonepillarwhilemaintainingfoundationsintheothertwo.

?NascentAdopters:Thisgroupof79metroareasshowsmoderateperformanceacrossallthreepillars.

?Others:Agroupof43metroareasthatcurrentlylagsonmultiplepillars.

Bytrackingtheclusters’progress,thereportdevelopsseveralmainfindingsthatshow:

2

3

?ArapidlygrowingbutnascentAImarket.Between2010and2025,AI-relatedjobpostingsgrewatanannualrateof28.5%,yetstillcompriseonlyabout2.5%ofallU.S.jobopenings.

?Extremeconcentration.TheBayAreaaccountsfor13%ofnationaljobpostingsfeaturingAIskills,andtogetherwiththeStarHubs,thisgroupof30top-

performingmetroareascaptures67%oftotalAIjobpostings.

?Signsofgeographicdiffusion.Severalnoncoastalmetroareas—including

Pittsburgh,Detroit,Madison,Wis.,andHuntsville,Ala.—nowrankinthetop

quartileonatleasttwopillars,indicatingemerginghubsbeyondthetraditionaltechcoasts.

?Persistentopportunitygaps.OverhalfofU.S.metroareasremaininthebottomtworeadinesstiers,revealingsignificantshortfallsintalentpipelines,research

infrastructure,andenterpriseadoption.

Thereportconcludeswithacallforatwo-prongedpolicyagenda.First,thisagendalaysoutarobustnationalAIplatformthatboostsnondefenseR&Dfunding;expandssharedresearchandcomputationalresources;acceleratesAIclusterscale-up;streamlines

innovationinfrastructureinvestments;andfundsAIcurriculumdevelopmentandresearchathighereducationinstitutions.Second,thereportarticulatesaregion-by-region

strategythatbeginswithregions’individualstartingpointsandusesthemtoshapelocalAIresearchagendas,fosterregionalclusterdevelopment,andbuildlocaltalentinwaysthatareorientedtolocalneeds.

Ultimately,theregion-tailoredprioritiesvarydependingonaregion’sdegreeofAIreadiness,asfollows:

?Superstars:Supportemergingtechcompanies,maintainappealtoimmigranttalent,investheavilyinlocaltecheducation,andconsideroptionsforworker-transitionsupport.

?StarHubsandEmergingCenters:Investindevelopingregionalclusters,increaseaccesstohigh-speedandaffordablecomputingresources,andintensifyeffortsintecheducation.

?FocusedMovers:Leanintosignaturestrengths,investinthecomputing

infrastructurenecessarytotrainandretaintoptalent,prioritizetechtransferand

commercialization,andleveragelocalbusinessenvironmentstopromoteadoption.

?NascentAdoptersandOthers:PromotebroadAIliteracy,demonstratepracticalAIapplicationsinroutinetasks,andthinkaboutAIcareerpathways.

Insum,theemergenceofAIasageneralpurposetechnologypresentsaninflectionpointforregionaleconomicdevelopmentintheUnitedStates.Leadersshouldmoveurgentlytopromotelocaldevelopmentthatwillcontributetomoreevenlydistributedand

transformativeAIgrowthfromcoasttocoast.

4

Introduction

Dramaticadvancesingenerativeartificialintelligencehavesparkedintensediscussions

aboutgeopoliticalcompetition.WilltheUnitedStates“win”theglobalracetodevelopanddeployAI,orwillChina?Wherewilladoptionoccurfirst?

Techvisionaries,securityexperts,andpoliticiansallinsistthattheU.S.mustout-prepareandout-innovateChinatoensurethatthenationmaintainsitssecurity,maximizesits

productivity,andunleashesthepotentialofitstalent.

YetthereisanotherquestionabouttheAIreadinessquest:HowisAIcreationandadoptionunfoldinghereathome?HowisitproceedingwithintheU.S.,andnamely,amongandbetweenthenation’shundredsofregionaleconomies?

Theanswerstothesequestionsmatterimmensely.Aswithpreviouswavesof

technologicaltransformation,howmuch,howeffectively,andinwhatspecificways

regionsharnessAI—especiallyintheircoreindustries—willbehugelyimportantin

shapingthegeographyoftheU.S.economyanddeterminingwhichregionsprosperandwhichdonot.

Inthisregard,AIhasemergedasa“generalpurposetechnology”—onewithfar-reachingconsequencesforindustries,places,andpeople.2AIsystemspromisetodrive

productivitybyautomatingroutinetasksandatothertimesaugmentingwork,allowinghumanstofocusonhigher-valueactivities.AIisacceleratingthepaceofdiscoveryandinnovationbyanalyzingvastdatasetsandidentifyingpatternshumansmightmiss.Andforthatmatter,AIenablesmoreefficientresourceallocationthroughintelligent

forecastingandoptimization.Assuch,AIcouldheavilyinfluencethenation’sabilitytoachieveitslargergoals,whetheritbethroughfasterdrugdevelopment,personalizedlearning,or“virtualemployees”optimizingsupplychaincomplexities.

YetmanyoftheseachievementscouldbejeopardizediftoolittleAIdevelopmentoccurswithtoolittlethoughtintoofewindustries.

AllofwhichsuggeststhatitmattersalotwhetherandwhichU.S.citiesandregionsarereadytofacilitateAIdevelopmentinhigh-qualityways,andarethusdemonstratinga

readinesstotrulybenefitfromfutureAIbuild-out.

Whichiswherethisreportcomesin.AsAI’spotentialtospurgrowthandtransformeconomiesbecomesincreasinglyclear,localleaderswanttounderstandwheretheirregionsstand.Specifically,theywanttogetahandleonthetypesofcapacitiesthatmatterinAIpreparednessandtheirlocalstatusonthosesuccessfactors.

Andso,thedataandassessmentsprovidedhereseektofillavoid.FollowinguponanearlierBrookingsreportonthegeographyofAI,thediscussionhereprovidesauniquebenchmarkingofU.S.metropolitanareasontheirstandingacross14metricsreflectingthreepillarsofcommunities’readinesstointegrateAIintoeconomicdevelopment.3

5

Assuch,thefollowinganalysisprovidesleadersbasicinformationonwhatmattersinestablishingAIreadinessasalocaleconomicdevelopmentpriority,andhowindividualregionspresentlyfareonthosepriorities.Atthesametime,theanalysisgroupsU.S.

metroareasintosixtiersofAIreadinessand,indoingso,providesanewviewofthegeographyofAIprogressasitvariesacrossthenation.

Whatdoesthatnewviewshow?Wefindbothcontinuednarrownessandadegreeofrecentdiffusion.Tobesure,thegeographyofAIadoptionprogressremainshighly

concentratedinashortlistof“Superstar”metroareas(SanFranciscoandSanJose,

Calif.)and“StarHubs”(suchasSeattle;Boston;Austin,Texas;andWashington,D.C.).

Therapiddiffusionofchatbotsinrecentyearshasnotchangedthat.Yetatthesame

time,thechatbotboomandnowthespreadofagenticAIisclearlybeginningtowidenthegeographyofAIactivityintheU.S.Inthatvein,thepresentanalysishighlightsseveral

additionalregions(includingPittsburgh;Rochester,N.Y.;Detroit;Tampa,Fla.;Madison,Wis.;andHuntsville,Ala.)thatarenowstrongontwoofthethreepillarsofadoption

readiness.

Wenotonlyreportontheprogressofindividualmetropolitanareas,butalsoonthe

integrationofregionaleconomiesintothenationalenterprise.Tostart,thereportreviewsbroadAIadoptiontrendsacrossthenation,introducesitsbenchmarkingapproach,and

outlinesaseriesoffindingsaboutthevariationandgeographicaldistributionofAI

activitiesinU.S.places.Afterthat,thereportreflectsonthetrendsandreviewsthetypesofstrategiesthenation,states,andregionscouldpursuetoaccelerateAIadoption

consideringtheircommunities’currentAIassetsandcapabilities.Ultimately,thegoalistohelpleaderspromotelocaldevelopmentthatwillcontributetomoreevenlydistributedAIgrowthfromcoasttocoast.

Background

Thenation’sreadinesstobenefitfromAIiscriticalbecausethetechnologyisgoingtoplayasignificantroleineconomicdevelopmentgivenitspotentialtodriveefficiency,innovation,andproductivityineveryindustry,bothingeneralandwithinregions.4

Overall,AIreadiness—asanemergent,innovation-driventechnology—willdependonthenation’sabilitytodeliveronthreesuccessfactors:

?TheavailabilityofabundantAItalent,sincetalentclustersarecriticalin

generatingself-reinforcingeconomicgrowthforpeople,firms,andplaces.5

?TheaccessibilityofAIinnovationandinnovationinfrastructure,sincetechnicalprogressplaysadisproportionateroleineconomicgrowthandbuildsonitself.6

?ActualadoptionofAIbyorganizations,becausebroadtechnologyadoption

remainsanimportantdriverofgrowthinproductivityandlivingstandards.7

6

Thisbenchmarkingtakesthesekeydimensionsoftechno-industrialcompetitivenessascore“pillars”ofAIreadiness,thoughitshouldbenotedthatsafety,equity,and

accountabilityareequallyimportant.MakingsurethatAIisdevelopedandadoptedresponsiblyiscriticalforlong-termsuccess.8

Atthesametime,AIadoptionattheregionallevelmattersequallyforeconomic

development,prosperity,andtheflourishingofcommunities.Assuch,individualplacesmustpayattentiontothelocalpresenceofthethreeAIreadinesspillarstoensuretheirsuccess.

Thenation,states,and“bigtech”actorsalsoneedtoconsiderthebroadergeographyofAIdiffusionacrossthenation.AI,afterall,verymuchreflectsthetendencyofemergingdigitalindustriestoclusterintenselyinashortlistoflarge,tech-orientedhubs,as

Brookingshasdescribedinearlierreports.9Inthatfashion,strongclusteringhaslong

beenviewedasapowerful“X-factor”forhigh-techgrowthintheU.S.,asscholarssuchasMichaelPorter,EdwardGlaeser,andEnricoMorettihaveargued.10

Recentanalysishasincreasinglysurfacedconcernsaboutthenation’sconcentratedhigh-techgeography—concernsthatcouldwellpertaintothegeographyofAIadoption.Inthisfashion,AIepitomizesthekindofunevenbuild-outeconomistNicholasBloomhas

trackedamongemergingtechnologies.In2021,forexample,Bloomexaminedthe

geographicalspreadof29disruptivetechnologiesandmappedagradualdiffusionof

lower-skilljobsawayfromtheiroriginal“frontier”hubs,yetalsoapersistentcentralizationofthehighest-valuejobsinthosehubs.11

Thesefamiliar“winner-take-most"patternsofhigh-techindustriesraiseimportant

questionsaboutthenatureanddistributionofAIactivitiesacrosstheU.S.TrackingbothlocalandbroadergeographicalpatternsofAIreadinessisnecessarytoassessthehealthoftheindustry.

Approach

TomapthestrengthsandgeographyoftheU.S.AIenterprise,thisreportundertakesto

benchmarkthevariationandintensityofkeysignalsofAIeconomicdevelopment

readinessinregionsacrossthenation’smajormetropolitanareas.Usingcross-sectional

datacollectedonvarioustypesofAIassetsandcapabilitiesatthemetropolitanlevel,theassessmentemploysasimplegroupingmethodtoidentifyindividualmetroareasand

groups(alsoreferredtoas“clusters”inthisreport)ofmetroareas’readinesstoengageintheAIenterprise.

Inthisvein,thebenchmarkingaimstoprovidelocalleaders—includinggovernment

officials,businesses,nonprofitintermediaries,andcivicorganizations—withimportantinsightsforharnessingAItodriveregionalgrowth.Ametro-area-levelassessmentisparticularlyvaluableasitprovidesintelligencethatcaninformtargetedstrategiesand

7

initiativesthataddresstalentandworkforcedynamics,innovationneeds,andbusinessdevelopmentatthelocallevel,wheretheywilllikelybemosteffective.

Data

Inordertocarryoutthisanalysis,metroareadatawerecollectedforallU.S.metroareasacrossthreekeypillarsofregionalAIreadiness:1)localAItalent;2)localAIknowledge

creationandinfrastructure;and3)actuallocalbusinessadoptionofAIapplications.

Together,thesecategoriesofdatacollectionreflecttheessentialelementsofarobustAIecosystem.TheycapturetheavailabilityoftheskilledprofessionalsneededtodriveAI

techinnovationanddeployment;theresearcheffortsandhardwarethatadvancethe

field;andbusinesses’currentengagementandreadinessforadoption.Analysisoftheseinterconnectedfactorsyieldsvaluableinsightsintoeachregion'sAIreadinessandis

usefulforidentifyingstrategicopportunitiesforinvestment.

Asagroup,thesemetricsrepresentareasonedselectionfromamongthelimitedarrayofavailablelocalstatisticsusefulforapproximatingplaces’standingonparticular

capabilities.Inmostcases,nosinglemeasure—suchasthenumberofresidentswith

computersciencedegrees—capturesthefullspectrumofrelevantcapacity,whichinthisexamplemightalsoberepresentedbylessavailablecredentialsorskillsgainedthroughexperience.

Alongtheselines,thesectionsthatfollowask:

WhohasAItalent?

AnabundantsupplyofAI-capableprofessionals(andothertypesofskilledworkers,notallwithprofessionaldegrees)isessentialfordrivinglocalinnovationanddeployment,asskilledtalentaffectsaregion’scapacitytodevelopandsupporttechnologydevelopmentandtheadoptionofAItechnologies.Regionswithqualityeducationprogramsthat

producenumerouscomputersciencegraduatesarealsomorelikelytoattractinvestmentandsupportemergingAIstartups.Additionally,awell-trainedworkforcehasthepotentialtofostercollaborationbetweenacademiaandindustry.

SelectedindicatorsofAItalentinclude:

?Computersciencebachelor,sdegreeholders.Censusdataonthenumberof

computerscience,engineering,andmathematicsgraduatesineachregionreflectthesupplyofprofessionalswhocansupportAIinnovationandadoption.

?ComputersciencePh.D.holders.Censusdataonthenumberofcomputer

science,engineering,andmathematicsPh.D.graduatesineachregionhighlighttheavailabilityofadvancedAItalenttohelpdevelopnewtechnologies.

8

?AIjobprofiles.StatisticsfromLightcastthattrackthevolumeofU.S.worker

onlineprofilesmentioningAIskillsindicatethesupplyofAItalentacrossdifferentregions.

Whoisinnovating?

ThecreationofAIknowledgethroughresearchanddevelopment(R&D)activityplaysanimportantroleinadvancingAIlocallyandnationally.Suchactivitynotonlyengages

criticalAItalent,butalsoenhancesaregion’sabilitytogenerateknowledgeandconvertitintopracticaltechnology.Innovationcapacitymayalsoincludeinnovationinfrastructure

suchascomputinghardwareandprograms.

SelectedindicatorsoflocalAIknowledgecreationinclude:

?FederalAIR&Dcontractspending.FundingdatafromUSAcapturesfederalinvestmentinAIR&D,highlightingfinancialsupportforinnovation.

?AcademicpapersattopAIconferences.DatafromAIRankingsonAIresearch

paperspublishedattopAIconferenceshighlightlocalcontributionstoadvancingthescienceofAI.

?AIpatents.DatafromtheUnitedStatesPatentandTrademarkOffice’s(USPTO)AIpatentdatasetsuggesthoweffectivelyresearchisbeingtranslatedintonew

technologies.

?High-performancecomputing(HPC)usagefromacademicusers.Metricson

HPCusageinacademicandresearchsettingsthroughtheNationalScience

Foundation’s(NSF)ACCESSprogramreflecttheextenttowhichlocalresearchersareaccessingadvancedcomputingresourcestoaccelerateAIresearch.

WhoisactuallyadoptingAI?

Understandinglocalfirms’currentadoptionofAIintheiroperationsisessentialfor

assessingaregion’soveralltechnologyengagement,creativity,competitiveness,andpotentialforproductivitygainsandgrowth.

SelectedindicatorsofAIadoptioninclude:

?AIstartups.DatafromCrunchbaseonyoungentrepreneurialcompanies

specializingincreatingAI-drivenproductsandservicesdepictlocalbusinessdynamismandtheconditionsforlaunchingAIinitiativesintheregion.

?FundingforAIstartups.DatafromPitchBookonventurecapital(VC)fundingraisedbyAIstartupsmeasurethecapitalavailableforentrepreneurialadoptionefforts.

?Enterprisetechadoption.DatafromtheNSFAnnualBusinessSurveymeasuringtheadoptionofAItechnologiesshowhoweasilycompaniesareintegratingAI.

9

?Enterprisedatareadiness.DatafromtheNSFAnnualBusinessSurveymeasurethedigitizationofcoreactivitiesnecessaryforAIintegration.

?Enterprisecloudreadiness.DatafromtheNSFAnnualBusinessSurveymeasurethecloudreadinessnecessaryforAIintegration.

?AIjobpostings.DatafromLightcastmeasuringjobpostingsrequiringAIskillshighlightthedemandfortalentandindicatearegion’sreadinesstoembraceAItechnologies.

?OccupationalexposuretoAI.DatafromOpenAIontheshareofanoccupation’stasksthatcouldsoonbeexposedtoChatGPT-4speaktothegeneralinvolvementofaregioninAIadoption.

Table1.Metro-area-levelindicatorsandtheirsources

Category

Data

Source

Description

WhohasAItalent?

Numberof

computersciencebachelor’s

degrees

U.S.Census

Bureau:AmericanCommunitySurvey(ACS),2023

Bachelor’sdegreein

scienceand

engineering,computers,mathematicsand

statistics,orrelatedfields

Numberof

computersciencePh.D.degrees

NSF:Higher

Education

Researchand

Development

(HERD)Survey,2023

Part-timeandfull-time

post-doctorate

researchersincomputerandinformationscience,mathematicsand

statistics,and

engineeringfields

JobprofileswithAIskills

Lightcast,2024

Onlineprofilesof

workerswithAIskills

thatstartedjobsin2024

WhoisdrivingAIinnovation?

FederalAIR&D

contractspending

USA,2024

FederalAIR&Dcontractspending

Publications

presentedattopAIconferences

AIRankings,2024

AIacademic

publications

AIpatents

USPTO,2023

AIpatents

High-performancecomputing(HPC)

NSFACCESS,2024

HPCusage

10

usagefrom

academicusers

WhoisreadytoadoptAI?

AIstartups

Crunchbase,2014to2024

AIstartups

VCfundingforAIstartups

PitchBook,2023to2024

FundingdealsdonebyAIstartups

Enterprisedatareadiness

U.S.Census

BureauandNSFAnnualBusinessSurvey,2021

Firmswithbusiness

activityprimarilyin

digitalformatper100firms

Enterprisecloudreadiness

U.S.Census

BureauandNSFAnnualBusinessSurvey,2021

Firmswithbusiness

activityprimarilyincloudformatper100firms

EnterpriseAIadoption

U.S.Census

BureauandNSFAnnualBusinessSurvey,2022

FirmsusingAIper100

firms

AIjobpostings

Lightcast,2024

OnlinejobpostingswithAIskills

LocaloccupationalexposuretoAI

OpenAI,2022

ShareofjobsexposedtogenerativeAI

Groupingmethod

ToevaluateandgroupU.S.metropolitanareasbasedontheirrelativestrengthin

AI?relatedcapabilities,thisreportdevelopsasimpleclassificationapproach.For387

metroareas,wemeasureAIcapacityacrossthethreehighlightedpillars(localtalent,

innovation,andbusinessadoption),andscalethemfrom0to1usingmax-min

normalization.Wethenrank195metroareaswithpopulationsgreaterthan250,000in

eachpillar.Thoseinthetop25%onapillarearna“T”(for“top”)forthatpillar.Thoseinthemiddle50%garneran“M”(for“middle”performance).Andthoseinthelowest25%earna“B”(for“bottom”).Inthisway,wecreategroupprofiles(e.g.,“TMB”)thatreflectaplace’sstrengthsandweaknesses.

Thethree-lettercombinationsarethenusedtoidentifysixgroupsofmetroareas.Thistaxonomyallowsforthecreationofmetroareaandgroupprofilesthatcanhelp

11

policymakersandinvestorspinpointwheretodirecttraining,funding,orsupporttoboostAIreadiness.

Table2.‘TMB’taxonomyofmetropolitanareas

Group

Definitions

Superstars*

SanFranciscoandSanJose(allthreeTs)

StarHubs

Strengthacrossallpillars(allthreeTs)

EmergingCenters

Strengthacrossatleasttwopillars(atleasttwoTs)

FocusedMovers

Focusedstrengthinonepillar(atleastoneT)

NascentAdopters

Mediumstrengthinatleasttwopillars(atleasttwoMsandnoT)

Others

Lowstrengthinatleasttwopillars(atleasttwoBsandnoT)

*SanFranciscoandSanJoseareplacedinaseparategrouptoreflecttheirhighperformanceacrossallthreeofourclassifyingpillars.ThisdecisionalsoensurescomparabilitywiththeBrookingsInstitution's“GeographyofAI”report,whichalsotreatedtheBayAreaasanoutlierduetoitsoutsizedlead.

DataandadetailedmethodologyareavailableinAppendixA.

Findings

Analysisofthe14measuresofAIeconomicactivityacrosstheU.S.yieldsseveralbroadfindingsabouttheindustry,itscharacteristics,anditsgeography.Thefollowingsectionsdetailthreecorefindings.

Finding#1:Inaggregate,thenation’sAIenterpriseisgrowingrapidly,thoughitremainsmodestinsize

Aggregatestatisticsthatbroadlyexaminethenation’sAIenterpriseprovideagaugeofthesector’sgrowthandcurrentsize.

OneoftheclearestindicatorsofAI’sexpandingfootprintintheU.S.economyistherisingshareofbusinessesreportingcurrentoranticipateduseofAItechnologies.AccordingtotheU.S.CensusBureau’sBusinessTrendsandOutlookSurvey(BTOS),theshareof

businessescurrentlyusingAIintheproductionofgoodsorservicesrosefromaround4%inearly2023to8.7%bymid-2025.Expectationsfornear-termAIusearehigher:Asof

thelatestsurvey,11%offirmsreportedthattheyplantoadoptAIwithinthenextsixmonths(seeFigure1).Thesetrendspointtosteadygrowthinenterprise-levelAI

integration.

12

Figure1.

JobpostingsthatnameAIskillsserveasanothersignalofAIadoption,eveniftheydonotdirectlyequatetoemploymentlevels.Inanyevent,LightcastdatareportthatAI-specificjobpostingshavebeengrowingrapidlyinabsolutenumbersandasashareofallpostingsacrosstheeconomy.Inabsoluteterms,AI-specificjobpostingsincreasedfrom3,780

uniqueinstancesinApril2010toaround82,980in2025,despitedeclinesin2023afterseveralroundsoflayoffsfromtechgiants(seeFigure2).Thatincreaseamountedto

28.5%averageannualizedgrowthforAIjobpostingsoverthe2010-to-2025period,whichoutstrippedthe11.1%averageannualizedgrowthofpostingsinthegeneral

economyandthe13.3%annualizedgrowthofthoseintheITsector.

13

Figure2.

AlongwithgreaterAI-specificjobactivityhascomegreaterdiffusionofthatactivity

acrossthecountry.Asrepresentedbyjobpostings,AIemploymentactivityhasdiffusedquiteextensivelyacrossmostofthenation,albeitofteninrelativelysparselocal

numbers.Figure3showsthatthisprocesshasnowbroughtAIactivitytomostareasofthecountryinthelastdecade.

14

Figure3.

Atthesametime,AIstartups—anothermeasureoftheindustry’sgrowth—havealsobeenproliferating.AccordingtodatafromCrunchbase,aplatformthattrackstechnology-

basedstartups,theannualnumberofAIstartupsfoundedintheU.S.increasedfrom311in2010to1,348in2024,surgingtheirshareofalltechstartupsfromaround1%to28%(seeFigure4).

15

Figure4.

Inshort,AIjobpostingsandstartupactivityeachunderscorethestronggrowthofAIactivityinboththelastdecadeandrecentyears.

YetdespitetheAIindustry’sgrowth,itsoverallsizeintheU.S.remainshardtoquantify

andstillmodest.ThisislargelyduetoAI'sbroaddiffusionintovarioussectors,which

makesitchallengingtoisolateitseconomicimpact.Nevertheless,multipleindicatorsfromouranalysispointtoarelativelymodestsizeforthenation’sAIindustry,despitethe

excitementthatenvelopedgenerativeAIinlate2022.

Inthisregard,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論