版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
JULY2025
MAPPINGTHEAIECONOMY:
WHICHREGIONSAREREADYFOR
THENEXTTECHNOLOGICALLEAP?
MarkMuroandShriyaMethkupally
Tableofcontents
Executivesummary 2
Introduction 4
Background 5
Approach 6
Data 7
WhohasAItalent? 7
Whoisinnovating? 8
WhoisactuallyadoptingAI? 8
Groupingmethod 10
Findings 11
Finding#1:Inaggregate,thenation’sAIenterpriseisgrowingrapidly,thoughitremains
modestinsize 11
Finding#2:Thenation’smainAIenterpriseisconcentratedinalimitednumberofmetro
areas,butnumerousotherregionsarehometomeaningfulAIactivity 20
Finding#3:CurrentandemergingregionalAIperformanceisinformedbyvariedlocalmixes
ofsuccessfactors 26
Discussion 35
ThenationshouldbuildastrongAI-supportplatform 36
Regionsshouldengageinstrategicclusterdevelopment 40
Conclusion 53
AppendixA:Technicalbackground 54
References 60
Acknowledgements 63
Endnotes 64
MappingtheAIeconomy:Whichregionsarereadyforthenexttechnologicalleap?
MarkMuroandShriyaMethkupally
Executivesummary
ArtificialintelligenceisrapidlytransformingtheU.S.economy.However,regional
capacitiesforAItalentdevelopment,research,andenterpriseadoptiondifferdramaticallyacrossthecountry,andpolicymakershavelittleinsightonwherethesegapsare
emerging.
Thenation’sreadinesstobenefitfromAIiscriticalbecausethetechnologyisgoingto
playasignificantroleineconomicdevelopmentgivenitspotentialtodriveinnovationandproductivityineveryindustry,bothingeneralandwithinregions.
Toaddresstheseissues,thisreportmapstheunfoldingAIrevolutionacross387U.S.
metropolitanareasandassesseshowthenationandlocaleconomiesarepositionedto
create,apply,andharnessAI.ThereportfirstunderscoresAI’simplicationsfornational
andregionaleconomicdevelopment.Thenitturnstoabenchmarkingexercisethat
groups14indicatorsintothreedimensionsofregionalAIreadiness:talent,innovation,andadoption.The“talent”pillarmeasurestheflowofAI-capableworkers;“innovation”
capturesresearchandinnovationstrengths;and“adoption”chartsindustryuptake.
Employingthisframework,thereportgroupsU.S.metroareasintosixtiersofAI
economicreadinessand,insodoing,illustratesthegeographyofAIprogressasitvariesacrossthenation.Continuingapatternfroma2021Brookingsreport,1themajorAI
communitytypesrevealedbythenewclusteranalysisare:
?Superstars:TheSanFranciscoandSanJose,Calif.,metropolitanareasexhibitunmatchedstrengthacrossallthreeAIpillars(talent,innovation,andadoption).
?StarHubs:Thisgroupof28metroareasformsasecondechelonofuniformly
strongAIecosystems,balancingtop?tiertalent,research,andenterpriseuptake.
?EmergingCenters:Thisgroupof14metroareascombinestopperformanceintwopillarswithonedevelopingarea.
?FocusedMovers:These29metroareasexcelinonepillarwhilemaintainingfoundationsintheothertwo.
?NascentAdopters:Thisgroupof79metroareasshowsmoderateperformanceacrossallthreepillars.
?Others:Agroupof43metroareasthatcurrentlylagsonmultiplepillars.
Bytrackingtheclusters’progress,thereportdevelopsseveralmainfindingsthatshow:
2
3
?ArapidlygrowingbutnascentAImarket.Between2010and2025,AI-relatedjobpostingsgrewatanannualrateof28.5%,yetstillcompriseonlyabout2.5%ofallU.S.jobopenings.
?Extremeconcentration.TheBayAreaaccountsfor13%ofnationaljobpostingsfeaturingAIskills,andtogetherwiththeStarHubs,thisgroupof30top-
performingmetroareascaptures67%oftotalAIjobpostings.
?Signsofgeographicdiffusion.Severalnoncoastalmetroareas—including
Pittsburgh,Detroit,Madison,Wis.,andHuntsville,Ala.—nowrankinthetop
quartileonatleasttwopillars,indicatingemerginghubsbeyondthetraditionaltechcoasts.
?Persistentopportunitygaps.OverhalfofU.S.metroareasremaininthebottomtworeadinesstiers,revealingsignificantshortfallsintalentpipelines,research
infrastructure,andenterpriseadoption.
Thereportconcludeswithacallforatwo-prongedpolicyagenda.First,thisagendalaysoutarobustnationalAIplatformthatboostsnondefenseR&Dfunding;expandssharedresearchandcomputationalresources;acceleratesAIclusterscale-up;streamlines
innovationinfrastructureinvestments;andfundsAIcurriculumdevelopmentandresearchathighereducationinstitutions.Second,thereportarticulatesaregion-by-region
strategythatbeginswithregions’individualstartingpointsandusesthemtoshapelocalAIresearchagendas,fosterregionalclusterdevelopment,andbuildlocaltalentinwaysthatareorientedtolocalneeds.
Ultimately,theregion-tailoredprioritiesvarydependingonaregion’sdegreeofAIreadiness,asfollows:
?Superstars:Supportemergingtechcompanies,maintainappealtoimmigranttalent,investheavilyinlocaltecheducation,andconsideroptionsforworker-transitionsupport.
?StarHubsandEmergingCenters:Investindevelopingregionalclusters,increaseaccesstohigh-speedandaffordablecomputingresources,andintensifyeffortsintecheducation.
?FocusedMovers:Leanintosignaturestrengths,investinthecomputing
infrastructurenecessarytotrainandretaintoptalent,prioritizetechtransferand
commercialization,andleveragelocalbusinessenvironmentstopromoteadoption.
?NascentAdoptersandOthers:PromotebroadAIliteracy,demonstratepracticalAIapplicationsinroutinetasks,andthinkaboutAIcareerpathways.
Insum,theemergenceofAIasageneralpurposetechnologypresentsaninflectionpointforregionaleconomicdevelopmentintheUnitedStates.Leadersshouldmoveurgentlytopromotelocaldevelopmentthatwillcontributetomoreevenlydistributedand
transformativeAIgrowthfromcoasttocoast.
4
Introduction
Dramaticadvancesingenerativeartificialintelligencehavesparkedintensediscussions
aboutgeopoliticalcompetition.WilltheUnitedStates“win”theglobalracetodevelopanddeployAI,orwillChina?Wherewilladoptionoccurfirst?
Techvisionaries,securityexperts,andpoliticiansallinsistthattheU.S.mustout-prepareandout-innovateChinatoensurethatthenationmaintainsitssecurity,maximizesits
productivity,andunleashesthepotentialofitstalent.
YetthereisanotherquestionabouttheAIreadinessquest:HowisAIcreationandadoptionunfoldinghereathome?HowisitproceedingwithintheU.S.,andnamely,amongandbetweenthenation’shundredsofregionaleconomies?
Theanswerstothesequestionsmatterimmensely.Aswithpreviouswavesof
technologicaltransformation,howmuch,howeffectively,andinwhatspecificways
regionsharnessAI—especiallyintheircoreindustries—willbehugelyimportantin
shapingthegeographyoftheU.S.economyanddeterminingwhichregionsprosperandwhichdonot.
Inthisregard,AIhasemergedasa“generalpurposetechnology”—onewithfar-reachingconsequencesforindustries,places,andpeople.2AIsystemspromisetodrive
productivitybyautomatingroutinetasksandatothertimesaugmentingwork,allowinghumanstofocusonhigher-valueactivities.AIisacceleratingthepaceofdiscoveryandinnovationbyanalyzingvastdatasetsandidentifyingpatternshumansmightmiss.Andforthatmatter,AIenablesmoreefficientresourceallocationthroughintelligent
forecastingandoptimization.Assuch,AIcouldheavilyinfluencethenation’sabilitytoachieveitslargergoals,whetheritbethroughfasterdrugdevelopment,personalizedlearning,or“virtualemployees”optimizingsupplychaincomplexities.
YetmanyoftheseachievementscouldbejeopardizediftoolittleAIdevelopmentoccurswithtoolittlethoughtintoofewindustries.
AllofwhichsuggeststhatitmattersalotwhetherandwhichU.S.citiesandregionsarereadytofacilitateAIdevelopmentinhigh-qualityways,andarethusdemonstratinga
readinesstotrulybenefitfromfutureAIbuild-out.
Whichiswherethisreportcomesin.AsAI’spotentialtospurgrowthandtransformeconomiesbecomesincreasinglyclear,localleaderswanttounderstandwheretheirregionsstand.Specifically,theywanttogetahandleonthetypesofcapacitiesthatmatterinAIpreparednessandtheirlocalstatusonthosesuccessfactors.
Andso,thedataandassessmentsprovidedhereseektofillavoid.FollowinguponanearlierBrookingsreportonthegeographyofAI,thediscussionhereprovidesauniquebenchmarkingofU.S.metropolitanareasontheirstandingacross14metricsreflectingthreepillarsofcommunities’readinesstointegrateAIintoeconomicdevelopment.3
5
Assuch,thefollowinganalysisprovidesleadersbasicinformationonwhatmattersinestablishingAIreadinessasalocaleconomicdevelopmentpriority,andhowindividualregionspresentlyfareonthosepriorities.Atthesametime,theanalysisgroupsU.S.
metroareasintosixtiersofAIreadinessand,indoingso,providesanewviewofthegeographyofAIprogressasitvariesacrossthenation.
Whatdoesthatnewviewshow?Wefindbothcontinuednarrownessandadegreeofrecentdiffusion.Tobesure,thegeographyofAIadoptionprogressremainshighly
concentratedinashortlistof“Superstar”metroareas(SanFranciscoandSanJose,
Calif.)and“StarHubs”(suchasSeattle;Boston;Austin,Texas;andWashington,D.C.).
Therapiddiffusionofchatbotsinrecentyearshasnotchangedthat.Yetatthesame
time,thechatbotboomandnowthespreadofagenticAIisclearlybeginningtowidenthegeographyofAIactivityintheU.S.Inthatvein,thepresentanalysishighlightsseveral
additionalregions(includingPittsburgh;Rochester,N.Y.;Detroit;Tampa,Fla.;Madison,Wis.;andHuntsville,Ala.)thatarenowstrongontwoofthethreepillarsofadoption
readiness.
Wenotonlyreportontheprogressofindividualmetropolitanareas,butalsoonthe
integrationofregionaleconomiesintothenationalenterprise.Tostart,thereportreviewsbroadAIadoptiontrendsacrossthenation,introducesitsbenchmarkingapproach,and
outlinesaseriesoffindingsaboutthevariationandgeographicaldistributionofAI
activitiesinU.S.places.Afterthat,thereportreflectsonthetrendsandreviewsthetypesofstrategiesthenation,states,andregionscouldpursuetoaccelerateAIadoption
consideringtheircommunities’currentAIassetsandcapabilities.Ultimately,thegoalistohelpleaderspromotelocaldevelopmentthatwillcontributetomoreevenlydistributedAIgrowthfromcoasttocoast.
Background
Thenation’sreadinesstobenefitfromAIiscriticalbecausethetechnologyisgoingtoplayasignificantroleineconomicdevelopmentgivenitspotentialtodriveefficiency,innovation,andproductivityineveryindustry,bothingeneralandwithinregions.4
Overall,AIreadiness—asanemergent,innovation-driventechnology—willdependonthenation’sabilitytodeliveronthreesuccessfactors:
?TheavailabilityofabundantAItalent,sincetalentclustersarecriticalin
generatingself-reinforcingeconomicgrowthforpeople,firms,andplaces.5
?TheaccessibilityofAIinnovationandinnovationinfrastructure,sincetechnicalprogressplaysadisproportionateroleineconomicgrowthandbuildsonitself.6
?ActualadoptionofAIbyorganizations,becausebroadtechnologyadoption
remainsanimportantdriverofgrowthinproductivityandlivingstandards.7
6
Thisbenchmarkingtakesthesekeydimensionsoftechno-industrialcompetitivenessascore“pillars”ofAIreadiness,thoughitshouldbenotedthatsafety,equity,and
accountabilityareequallyimportant.MakingsurethatAIisdevelopedandadoptedresponsiblyiscriticalforlong-termsuccess.8
Atthesametime,AIadoptionattheregionallevelmattersequallyforeconomic
development,prosperity,andtheflourishingofcommunities.Assuch,individualplacesmustpayattentiontothelocalpresenceofthethreeAIreadinesspillarstoensuretheirsuccess.
Thenation,states,and“bigtech”actorsalsoneedtoconsiderthebroadergeographyofAIdiffusionacrossthenation.AI,afterall,verymuchreflectsthetendencyofemergingdigitalindustriestoclusterintenselyinashortlistoflarge,tech-orientedhubs,as
Brookingshasdescribedinearlierreports.9Inthatfashion,strongclusteringhaslong
beenviewedasapowerful“X-factor”forhigh-techgrowthintheU.S.,asscholarssuchasMichaelPorter,EdwardGlaeser,andEnricoMorettihaveargued.10
Recentanalysishasincreasinglysurfacedconcernsaboutthenation’sconcentratedhigh-techgeography—concernsthatcouldwellpertaintothegeographyofAIadoption.Inthisfashion,AIepitomizesthekindofunevenbuild-outeconomistNicholasBloomhas
trackedamongemergingtechnologies.In2021,forexample,Bloomexaminedthe
geographicalspreadof29disruptivetechnologiesandmappedagradualdiffusionof
lower-skilljobsawayfromtheiroriginal“frontier”hubs,yetalsoapersistentcentralizationofthehighest-valuejobsinthosehubs.11
Thesefamiliar“winner-take-most"patternsofhigh-techindustriesraiseimportant
questionsaboutthenatureanddistributionofAIactivitiesacrosstheU.S.TrackingbothlocalandbroadergeographicalpatternsofAIreadinessisnecessarytoassessthehealthoftheindustry.
Approach
TomapthestrengthsandgeographyoftheU.S.AIenterprise,thisreportundertakesto
benchmarkthevariationandintensityofkeysignalsofAIeconomicdevelopment
readinessinregionsacrossthenation’smajormetropolitanareas.Usingcross-sectional
datacollectedonvarioustypesofAIassetsandcapabilitiesatthemetropolitanlevel,theassessmentemploysasimplegroupingmethodtoidentifyindividualmetroareasand
groups(alsoreferredtoas“clusters”inthisreport)ofmetroareas’readinesstoengageintheAIenterprise.
Inthisvein,thebenchmarkingaimstoprovidelocalleaders—includinggovernment
officials,businesses,nonprofitintermediaries,andcivicorganizations—withimportantinsightsforharnessingAItodriveregionalgrowth.Ametro-area-levelassessmentisparticularlyvaluableasitprovidesintelligencethatcaninformtargetedstrategiesand
7
initiativesthataddresstalentandworkforcedynamics,innovationneeds,andbusinessdevelopmentatthelocallevel,wheretheywilllikelybemosteffective.
Data
Inordertocarryoutthisanalysis,metroareadatawerecollectedforallU.S.metroareasacrossthreekeypillarsofregionalAIreadiness:1)localAItalent;2)localAIknowledge
creationandinfrastructure;and3)actuallocalbusinessadoptionofAIapplications.
Together,thesecategoriesofdatacollectionreflecttheessentialelementsofarobustAIecosystem.TheycapturetheavailabilityoftheskilledprofessionalsneededtodriveAI
techinnovationanddeployment;theresearcheffortsandhardwarethatadvancethe
field;andbusinesses’currentengagementandreadinessforadoption.Analysisoftheseinterconnectedfactorsyieldsvaluableinsightsintoeachregion'sAIreadinessandis
usefulforidentifyingstrategicopportunitiesforinvestment.
Asagroup,thesemetricsrepresentareasonedselectionfromamongthelimitedarrayofavailablelocalstatisticsusefulforapproximatingplaces’standingonparticular
capabilities.Inmostcases,nosinglemeasure—suchasthenumberofresidentswith
computersciencedegrees—capturesthefullspectrumofrelevantcapacity,whichinthisexamplemightalsoberepresentedbylessavailablecredentialsorskillsgainedthroughexperience.
Alongtheselines,thesectionsthatfollowask:
WhohasAItalent?
AnabundantsupplyofAI-capableprofessionals(andothertypesofskilledworkers,notallwithprofessionaldegrees)isessentialfordrivinglocalinnovationanddeployment,asskilledtalentaffectsaregion’scapacitytodevelopandsupporttechnologydevelopmentandtheadoptionofAItechnologies.Regionswithqualityeducationprogramsthat
producenumerouscomputersciencegraduatesarealsomorelikelytoattractinvestmentandsupportemergingAIstartups.Additionally,awell-trainedworkforcehasthepotentialtofostercollaborationbetweenacademiaandindustry.
SelectedindicatorsofAItalentinclude:
?Computersciencebachelor,sdegreeholders.Censusdataonthenumberof
computerscience,engineering,andmathematicsgraduatesineachregionreflectthesupplyofprofessionalswhocansupportAIinnovationandadoption.
?ComputersciencePh.D.holders.Censusdataonthenumberofcomputer
science,engineering,andmathematicsPh.D.graduatesineachregionhighlighttheavailabilityofadvancedAItalenttohelpdevelopnewtechnologies.
8
?AIjobprofiles.StatisticsfromLightcastthattrackthevolumeofU.S.worker
onlineprofilesmentioningAIskillsindicatethesupplyofAItalentacrossdifferentregions.
Whoisinnovating?
ThecreationofAIknowledgethroughresearchanddevelopment(R&D)activityplaysanimportantroleinadvancingAIlocallyandnationally.Suchactivitynotonlyengages
criticalAItalent,butalsoenhancesaregion’sabilitytogenerateknowledgeandconvertitintopracticaltechnology.Innovationcapacitymayalsoincludeinnovationinfrastructure
suchascomputinghardwareandprograms.
SelectedindicatorsoflocalAIknowledgecreationinclude:
?FederalAIR&Dcontractspending.FundingdatafromUSAcapturesfederalinvestmentinAIR&D,highlightingfinancialsupportforinnovation.
?AcademicpapersattopAIconferences.DatafromAIRankingsonAIresearch
paperspublishedattopAIconferenceshighlightlocalcontributionstoadvancingthescienceofAI.
?AIpatents.DatafromtheUnitedStatesPatentandTrademarkOffice’s(USPTO)AIpatentdatasetsuggesthoweffectivelyresearchisbeingtranslatedintonew
technologies.
?High-performancecomputing(HPC)usagefromacademicusers.Metricson
HPCusageinacademicandresearchsettingsthroughtheNationalScience
Foundation’s(NSF)ACCESSprogramreflecttheextenttowhichlocalresearchersareaccessingadvancedcomputingresourcestoaccelerateAIresearch.
WhoisactuallyadoptingAI?
Understandinglocalfirms’currentadoptionofAIintheiroperationsisessentialfor
assessingaregion’soveralltechnologyengagement,creativity,competitiveness,andpotentialforproductivitygainsandgrowth.
SelectedindicatorsofAIadoptioninclude:
?AIstartups.DatafromCrunchbaseonyoungentrepreneurialcompanies
specializingincreatingAI-drivenproductsandservicesdepictlocalbusinessdynamismandtheconditionsforlaunchingAIinitiativesintheregion.
?FundingforAIstartups.DatafromPitchBookonventurecapital(VC)fundingraisedbyAIstartupsmeasurethecapitalavailableforentrepreneurialadoptionefforts.
?Enterprisetechadoption.DatafromtheNSFAnnualBusinessSurveymeasuringtheadoptionofAItechnologiesshowhoweasilycompaniesareintegratingAI.
9
?Enterprisedatareadiness.DatafromtheNSFAnnualBusinessSurveymeasurethedigitizationofcoreactivitiesnecessaryforAIintegration.
?Enterprisecloudreadiness.DatafromtheNSFAnnualBusinessSurveymeasurethecloudreadinessnecessaryforAIintegration.
?AIjobpostings.DatafromLightcastmeasuringjobpostingsrequiringAIskillshighlightthedemandfortalentandindicatearegion’sreadinesstoembraceAItechnologies.
?OccupationalexposuretoAI.DatafromOpenAIontheshareofanoccupation’stasksthatcouldsoonbeexposedtoChatGPT-4speaktothegeneralinvolvementofaregioninAIadoption.
Table1.Metro-area-levelindicatorsandtheirsources
Category
Data
Source
Description
WhohasAItalent?
Numberof
computersciencebachelor’s
degrees
U.S.Census
Bureau:AmericanCommunitySurvey(ACS),2023
Bachelor’sdegreein
scienceand
engineering,computers,mathematicsand
statistics,orrelatedfields
Numberof
computersciencePh.D.degrees
NSF:Higher
Education
Researchand
Development
(HERD)Survey,2023
Part-timeandfull-time
post-doctorate
researchersincomputerandinformationscience,mathematicsand
statistics,and
engineeringfields
JobprofileswithAIskills
Lightcast,2024
Onlineprofilesof
workerswithAIskills
thatstartedjobsin2024
WhoisdrivingAIinnovation?
FederalAIR&D
contractspending
USA,2024
FederalAIR&Dcontractspending
Publications
presentedattopAIconferences
AIRankings,2024
AIacademic
publications
AIpatents
USPTO,2023
AIpatents
High-performancecomputing(HPC)
NSFACCESS,2024
HPCusage
10
usagefrom
academicusers
WhoisreadytoadoptAI?
AIstartups
Crunchbase,2014to2024
AIstartups
VCfundingforAIstartups
PitchBook,2023to2024
FundingdealsdonebyAIstartups
Enterprisedatareadiness
U.S.Census
BureauandNSFAnnualBusinessSurvey,2021
Firmswithbusiness
activityprimarilyin
digitalformatper100firms
Enterprisecloudreadiness
U.S.Census
BureauandNSFAnnualBusinessSurvey,2021
Firmswithbusiness
activityprimarilyincloudformatper100firms
EnterpriseAIadoption
U.S.Census
BureauandNSFAnnualBusinessSurvey,2022
FirmsusingAIper100
firms
AIjobpostings
Lightcast,2024
OnlinejobpostingswithAIskills
LocaloccupationalexposuretoAI
OpenAI,2022
ShareofjobsexposedtogenerativeAI
Groupingmethod
ToevaluateandgroupU.S.metropolitanareasbasedontheirrelativestrengthin
AI?relatedcapabilities,thisreportdevelopsasimpleclassificationapproach.For387
metroareas,wemeasureAIcapacityacrossthethreehighlightedpillars(localtalent,
innovation,andbusinessadoption),andscalethemfrom0to1usingmax-min
normalization.Wethenrank195metroareaswithpopulationsgreaterthan250,000in
eachpillar.Thoseinthetop25%onapillarearna“T”(for“top”)forthatpillar.Thoseinthemiddle50%garneran“M”(for“middle”performance).Andthoseinthelowest25%earna“B”(for“bottom”).Inthisway,wecreategroupprofiles(e.g.,“TMB”)thatreflectaplace’sstrengthsandweaknesses.
Thethree-lettercombinationsarethenusedtoidentifysixgroupsofmetroareas.Thistaxonomyallowsforthecreationofmetroareaandgroupprofilesthatcanhelp
11
policymakersandinvestorspinpointwheretodirecttraining,funding,orsupporttoboostAIreadiness.
Table2.‘TMB’taxonomyofmetropolitanareas
Group
Definitions
Superstars*
SanFranciscoandSanJose(allthreeTs)
StarHubs
Strengthacrossallpillars(allthreeTs)
EmergingCenters
Strengthacrossatleasttwopillars(atleasttwoTs)
FocusedMovers
Focusedstrengthinonepillar(atleastoneT)
NascentAdopters
Mediumstrengthinatleasttwopillars(atleasttwoMsandnoT)
Others
Lowstrengthinatleasttwopillars(atleasttwoBsandnoT)
*SanFranciscoandSanJoseareplacedinaseparategrouptoreflecttheirhighperformanceacrossallthreeofourclassifyingpillars.ThisdecisionalsoensurescomparabilitywiththeBrookingsInstitution's“GeographyofAI”report,whichalsotreatedtheBayAreaasanoutlierduetoitsoutsizedlead.
DataandadetailedmethodologyareavailableinAppendixA.
Findings
Analysisofthe14measuresofAIeconomicactivityacrosstheU.S.yieldsseveralbroadfindingsabouttheindustry,itscharacteristics,anditsgeography.Thefollowingsectionsdetailthreecorefindings.
Finding#1:Inaggregate,thenation’sAIenterpriseisgrowingrapidly,thoughitremainsmodestinsize
Aggregatestatisticsthatbroadlyexaminethenation’sAIenterpriseprovideagaugeofthesector’sgrowthandcurrentsize.
OneoftheclearestindicatorsofAI’sexpandingfootprintintheU.S.economyistherisingshareofbusinessesreportingcurrentoranticipateduseofAItechnologies.AccordingtotheU.S.CensusBureau’sBusinessTrendsandOutlookSurvey(BTOS),theshareof
businessescurrentlyusingAIintheproductionofgoodsorservicesrosefromaround4%inearly2023to8.7%bymid-2025.Expectationsfornear-termAIusearehigher:Asof
thelatestsurvey,11%offirmsreportedthattheyplantoadoptAIwithinthenextsixmonths(seeFigure1).Thesetrendspointtosteadygrowthinenterprise-levelAI
integration.
12
Figure1.
JobpostingsthatnameAIskillsserveasanothersignalofAIadoption,eveniftheydonotdirectlyequatetoemploymentlevels.Inanyevent,LightcastdatareportthatAI-specificjobpostingshavebeengrowingrapidlyinabsolutenumbersandasashareofallpostingsacrosstheeconomy.Inabsoluteterms,AI-specificjobpostingsincreasedfrom3,780
uniqueinstancesinApril2010toaround82,980in2025,despitedeclinesin2023afterseveralroundsoflayoffsfromtechgiants(seeFigure2).Thatincreaseamountedto
28.5%averageannualizedgrowthforAIjobpostingsoverthe2010-to-2025period,whichoutstrippedthe11.1%averageannualizedgrowthofpostingsinthegeneral
economyandthe13.3%annualizedgrowthofthoseintheITsector.
13
Figure2.
AlongwithgreaterAI-specificjobactivityhascomegreaterdiffusionofthatactivity
acrossthecountry.Asrepresentedbyjobpostings,AIemploymentactivityhasdiffusedquiteextensivelyacrossmostofthenation,albeitofteninrelativelysparselocal
numbers.Figure3showsthatthisprocesshasnowbroughtAIactivitytomostareasofthecountryinthelastdecade.
14
Figure3.
Atthesametime,AIstartups—anothermeasureoftheindustry’sgrowth—havealsobeenproliferating.AccordingtodatafromCrunchbase,aplatformthattrackstechnology-
basedstartups,theannualnumberofAIstartupsfoundedintheU.S.increasedfrom311in2010to1,348in2024,surgingtheirshareofalltechstartupsfromaround1%to28%(seeFigure4).
15
Figure4.
Inshort,AIjobpostingsandstartupactivityeachunderscorethestronggrowthofAIactivityinboththelastdecadeandrecentyears.
YetdespitetheAIindustry’sgrowth,itsoverallsizeintheU.S.remainshardtoquantify
andstillmodest.ThisislargelyduetoAI'sbroaddiffusionintovarioussectors,which
makesitchallengingtoisolateitseconomicimpact.Nevertheless,multipleindicatorsfromouranalysispointtoarelativelymodestsizeforthenation’sAIindustry,despitethe
excitementthatenvelopedgenerativeAIinlate2022.
Inthisregard,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46639.4-2025鑄造機械術(shù)語第4部分:拋噴丸清理機及其他鑄件清理設(shè)備
- GB/T 46746-2025船舶低壓電力系統(tǒng)絕緣故障定位裝置
- 2026年吉安幼兒師范高等??茖W(xué)校單招職業(yè)傾向性考試題庫含答案詳解
- 2026年甘肅省定西地區(qū)單招職業(yè)傾向性測試題庫帶答案詳解
- 2026年湖南省益陽市單招職業(yè)適應(yīng)性考試題庫附答案詳解
- 2026年南通科技職業(yè)學(xué)院單招職業(yè)技能考試題庫參考答案詳解
- 2026年寧波職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
- 2026年海南外國語職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫參考答案詳解
- 2026年甘肅省嘉峪關(guān)市單招職業(yè)適應(yīng)性測試題庫附答案詳解
- 2026年益陽師范高等??茖W(xué)校單招職業(yè)適應(yīng)性測試題庫及參考答案詳解1套
- 2025版腦損傷常見癥狀及護理策略
- GB/T 39693.4-2025硫化橡膠或熱塑性橡膠硬度的測定第4部分:用邵氏硬度計法(邵爾硬度)測定壓入硬度
- 2025年直播帶貨主播服務(wù)合同范本
- 2025年青海省政府采購評審專家考試測試題及答案
- 2025年山東泰山藥業(yè)集團有限公司招聘(21人)筆試備考試題及答案解析
- 心電監(jiān)測線路管理規(guī)范
- 北京市西城區(qū)2024-2025學(xué)年七年級上學(xué)期期末道德與法治試卷
- 年生產(chǎn)加工鈉離子電池負極材料8000 噸、鋰離子電池負極材料3000噸項目環(huán)境風(fēng)險專項評價報告環(huán)評報告
- (正式版)DB37∕T 4899-2025 《深遠海養(yǎng)殖管理工作指南》
- 監(jiān)理工作制度(水利工程)
- 拖拉機運輸協(xié)議合同范本
評論
0/150
提交評論