版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.102、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm3、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是()A. B. C. D.4、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.5、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.6、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.238、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.2、如圖,、分別與相切于A、B兩點,若,則的度數(shù)為________.3、如果點與點B關(guān)于原點對稱,那么點B的坐標(biāo)是______.4、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個球,則摸到兩個都是紅球的概率是_______.5、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.6、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.7、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.2、在平面直角坐標(biāo)系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.3、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.4、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍(lán)球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.5、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時,直接出的值.6、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.7、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學(xué)、生物的概率.-參考答案-一、單選題1、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.2、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.3、C【分析】過點A作AC⊥x軸于點C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是.故選:C【點睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點A的坐標(biāo),屬于中考??碱}型.4、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.6、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.7、A【分析】由題意可設(shè)盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設(shè)盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運(yùn)用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.8、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機(jī)事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.二、填空題1、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.2、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質(zhì)以及圓周角定理,掌握以上知識點是解此題的關(guān)鍵.3、【分析】關(guān)于原點對稱的點坐標(biāo)特征為:橫坐標(biāo)、縱坐標(biāo)都互為相反數(shù);進(jìn)而求出點B坐標(biāo).【詳解】解:由題意知點B橫坐標(biāo)為;縱坐標(biāo)為;故答案為:.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo)知識.解題的關(guān)鍵在于熟練記憶關(guān)于原點對稱的點坐標(biāo)中相對應(yīng)的坐標(biāo)互為相反數(shù).4、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.5、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.6、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.三、解答題1、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形全等判定及性質(zhì)、勾股定理、三角形內(nèi)角和等,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).2、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點O作OD⊥AB于點D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點C在點A的右側(cè)時,當(dāng)點C與點A重合時,當(dāng)點C在點A的左側(cè)時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點A在⊙O上,點B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點O作OD⊥AB于點D,∵點A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,∴r的取值范圍是,(3)如圖,過點C作CN⊥AB于點N,∵點A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當(dāng)點C在點A的右側(cè)時,,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當(dāng)點C與點A重合時,,此時d(⊙C,線段AB)=0,當(dāng)點C在點A的左側(cè)時,,∴,∴,解得:,∴.【點睛】本題主要考查了點與圓的位置關(guān)系,點與直線的位置關(guān)系,理解新定義,熟練掌握點與圓的位置關(guān)系,點與直線的位置關(guān)系是解題的關(guān)鍵.3、見解析【分析】由題意易得AB⊥CD,,則有,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求證.【詳解】證明:∵AB為⊙O的直徑,點E是弦CD的中點,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【點睛】本題主要考查垂徑定理、平行線的性質(zhì)及圓周角定理,熟練掌握垂徑定理、平行線的性質(zhì)及圓周角定理是解題的關(guān)鍵.4、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍(lán)”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍(lán)球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍(lán)”,列表法為:紅1紅2黃藍(lán)紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍(lán))紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍(lán))黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍(lán))藍(lán)(藍(lán),紅1)(藍(lán),紅2)(藍(lán),黃)(藍(lán),藍(lán))共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.5、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(藥學(xué))藥事管理與法規(guī)綜合測試題及答案
- 2025年高職施工員實務(wù)(施工管理)試題及答案
- 2025年大學(xué)材料物理(材料性能測試)試題及答案
- 2025年大學(xué)機(jī)械設(shè)計制造及其自動化(機(jī)械制造企業(yè)管理)試題及答案
- 2025年中職(社會保障事務(wù))社會保險辦理階段測試試題及答案
- 2025年中職工業(yè)分析技術(shù)(化學(xué)分析實操)試題及答案
- 2025年高職(云計算技術(shù)應(yīng)用)云平臺部署與維護(hù)階段測試題及答案
- 2025年高職國際物流(國際貨運(yùn)流程)試題及答案
- 2025年高職農(nóng)產(chǎn)品加工與質(zhì)量檢測(農(nóng)產(chǎn)品檢測)試題及答案
- 2025年高職(工程造價)工程造價案例分析綜合測試題及答案
- 礦山項目的投資與融資策略
- 2024年內(nèi)蒙古能源集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 《念奴嬌 赤壁懷古》《永遇樂 京口北固亭懷古》《聲聲慢》默寫練習(xí) 統(tǒng)編版高中語文必修上冊
- 《半導(dǎo)體器件物理》復(fù)習(xí)題2012
- 眾辰變頻器z2400t-15gy-1說明書
- 非電量保護(hù)裝置技術(shù)說明書
- 全國行政區(qū)劃代碼
- 新華書店先進(jìn)事跡匯報
- 船體振動的衡準(zhǔn)及減振方法
- 刑事偵查卷宗
- 水泥混凝土路面滑模攤鋪機(jī)施工工法
評論
0/150
提交評論