基礎強化滬科版9年級下冊期末試卷【完整版】附答案詳解_第1頁
基礎強化滬科版9年級下冊期末試卷【完整版】附答案詳解_第2頁
基礎強化滬科版9年級下冊期末試卷【完整版】附答案詳解_第3頁
基礎強化滬科版9年級下冊期末試卷【完整版】附答案詳解_第4頁
基礎強化滬科版9年級下冊期末試卷【完整版】附答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.2、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞3、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.44、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、下列說法正確的是()A.擲一枚質地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復試驗,可以用頻率估計概率.6、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內角和是D.400人中有兩人的生日在同一天7、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定8、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務時段開設了與冬奧會項目冰壺有關的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內滑行的路徑MN的長度為______cm.2、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內旋轉(始終保持圓心O在正方形ABCD內部).給出下列四個結論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結論有_____(填寫所有正確結論的序號).3、點(2,-3)關于原點的對稱點的坐標為_____.4、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.5、AB是的直徑,點C在上,,點P在線段OB上運動.設,則x的取值范圍是________.6、如圖,把△ABC繞點C順時針旋轉某個角度α得到,∠A=30°,∠1=70°,則旋轉角α的度數(shù)為_____.7、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.三、解答題(7小題,每小題0分,共計0分)1、如圖,在△ABC是⊙O的內接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.2、在平面直角坐標系中,的三個頂點坐標分別為.(每個方格的邊長均為1個單位長度)(1)畫出關于原點對稱的圖形,并寫出點的坐標;(2)畫出繞點O逆時針旋轉后的圖形,并寫出點的坐標;(3)寫出經(jīng)過怎樣的旋轉可直接得到.(請將20題(1)(2)小問的圖都作在所給圖中)3、在平面直角坐標系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應點),則稱線段AB是⊙O的關于直線l對稱的“關聯(lián)線段”.例如:在圖1中,線段是⊙O的關于直線l對稱的“關聯(lián)線段”.(1)如圖2,的橫、縱坐標都是整數(shù).①在線段中,⊙O的關于直線y=x+2對稱的“關聯(lián)線段”是_______;②若線段中,存在⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關于直線對稱的“關聯(lián)線段”,直接寫出b的最大值和最小值,以及相應的BC長.4、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.5、如圖,四邊形ABCD內接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.6、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學生對新冠疫情防控知識的了解程度,組織七、八年級學生開展新冠疫情防控知識測試(滿分為10分).學校學生處從七、八年級學生中各隨機抽取了20名學生的成績進行了統(tǒng)計.下面提供了部分信息.抽取的20名七年級學生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學生成績分析表:年級七年級八年級平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級共有學生2000人,估計此次測試成績不低于9分的學生有多少人?(3)在所抽取的七年級與八年級得10分的學生中,隨機抽取2名學生在全校學生大會上進行新冠疫情防控知識宣講,求所抽取的2名學生恰好是1名七年級學生和1名八年級學生的概率.7、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長-參考答案-一、單選題1、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質是解題的關鍵.2、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質,有理數(shù)大小比較,掌握相關知識是解題的關鍵.3、C【分析】先設半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設半徑為r,則周長為2πr,120°所對應的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關鍵.4、B【分析】由切線的性質可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.5、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質:對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務發(fā)生的概率是本題關鍵.6、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.7、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.8、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.二、填空題1、【分析】如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質定理和垂徑定理求解即可.【詳解】解:如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質定理、垂徑定理、勾股定理,熟練掌握切線的性質和垂徑定理是解答的關鍵.2、②③④【分析】根據(jù)切線的性質,正方形的性質,通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結論;運用對角互補的四邊形內接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質,直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質,熟練掌握圓的性質,靈活運用直角三角形的性質,線段最短原理是解題的關鍵.3、(-2,3)【分析】根據(jù)“關于原點對稱的點的坐標關系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關于原點的對稱點的坐標是(-2,3).故答案為:

(-2,3).【點睛】本題主要考查點關于原點對稱,解決本題的關鍵是要熟練掌握關于原點對稱點的坐標的關系.4、6【分析】依題意,直角三角形性質,結合題意能夠容納的最大為內切圓,結合內切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質:可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內切圓的性質,重點在理解題意和利用內切圓半徑求解面積;5、【分析】分別求出當點P與點O重合時,當點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當點P與點O重合時,∵OA=OC,∴,即;當點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質,直徑所對的圓周角是直角的性質,正確理解點P的運動位置是解題的關鍵.6、##【分析】由旋轉的性質可得再利用三角形的外角的性質求解從而可得答案.【詳解】解:把△ABC繞點C順時針旋轉某個角度α得到,∠A=30°,∠1=70°,故答案為:【點睛】本題考查的是旋轉的性質,三角形的外角的性質,利用性質的性質求解是解本題的關鍵.7、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關鍵.三、解答題1、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點O作OE⊥AB,垂足為E,先由等腰三角形的性質與三角形內角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.【點睛】本題主要考查了圓周角定理,切線的判定,等腰三角形的性質與判定,含30度角的直角三角形的性質,三角形內角和定理,勾股定理,熟知相關知識是解題的關鍵.2、(1)見解析,;(2)見解析,(3)繞點O順時針時針旋轉【分析】(1)根據(jù)題意得:關于原點的對稱點為,再順次連接,即可求解;(2)根據(jù)題意得:繞點O逆時針旋轉后的對稱點為,再順次連接;(3)根據(jù)題意得:繞點O順時針時針旋轉后可直接得到,即可求解.(1)解:根據(jù)題意得:關于原點的對應點為,畫出圖形如下圖所示:(2)解:根據(jù)題意得:繞點O逆時針旋轉后的對應點為,畫出圖形如下圖所示:(3)解:根據(jù)題意得:繞點O順時針時針旋轉后可直接得到.【點睛】本題主要考查了圖形的變換——畫關于原點對稱,繞原點旋轉后圖形,得到圖形關于原點對稱,繞原點旋轉后對應點的坐標是解題的關鍵.3、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據(jù)題意作出圖象即可解答;②根據(jù)“關聯(lián)線段”的定義,可確定線段A2B2存在“關聯(lián)線段”,再分情況解答即可;(2)設與AB對應的“關聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最?。蝗缓蠓謩e畫出圖形求解即可;【詳解】解:(1)①作出各點關于直線y=x+2的對稱點,如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”;直線A2B2的解析式是y=-x+5,且,故A2B2是⊙O的關于直線y=x+2對稱的“關聯(lián)線段”;當A2B2是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,且對應兩個端點分別是(0,1)與(1,0)時,m=3,當A2B2是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,且對應兩個端點分別是(0,-1)與(-1,0)時,m=2,故答案為:2或3.(2)設與AB對應的“關聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最??;當點A’(1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(4,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;當點A’(-1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(2,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=;即綜上,b的最大值為,此時BC=;b的最小值為,此時BC=.【點睛】本題是新定義綜合題,主要考查了一次函數(shù)圖象上點的坐標特點、圓的有關知識、等邊三角形的判定和性質、勾股定理、軸對稱的性質等知識,正確理解新定義的含義、靈活應用數(shù)形結合思想是解題的關鍵.4、(1)見解析;(2)3【分析】(1)根據(jù)∠D=∠B,∠BCO=∠B,代換證明;(2)根據(jù)垂徑定理,得CE=,,利用勾股定理計算即可.【詳解】(1)證明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D;∴∠BCO=∠D;(2)解:∵AB是⊙O的直徑,且CD⊥AB于點E,∴CE=CD,∵CD=,∴CE=,在Rt△OCE中,,∵OE=1,∴,∴;∴⊙O的半徑為3.【點睛】本題考查了圓周角定理,垂徑定理,勾股定理,結合圖形,熟練運用三個定理是解題的關鍵.5、(1)見詳解;(2)【分析】(1)由題意及垂徑定理可知AC垂直平分BD,進而問題可求解;(2)由題意易得,然后由(1)可知△ABD是等邊三角形,進而問題可求解.【詳解】(1)證明:∵AC是直徑,點C是劣弧BD的中點,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論