解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試試題(含詳細解析)_第1頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試試題(含詳細解析)_第2頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試試題(含詳細解析)_第3頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試試題(含詳細解析)_第4頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試試題(含詳細解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川峨眉第二中學7年級數(shù)學下冊第四章三角形單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°2、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°3、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E4、如圖,直線EF經(jīng)過AC的中點O,交AB于點E,交CD于點F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF5、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊6、如圖,在中,,,AD平分交BC于點D,在AB上截取,則的度數(shù)為()A.30° B.20° C.10° D.15°7、如圖,△ABC中,D,E分別為BC,AD的中點,若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.88、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm9、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,1010、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.2、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.3、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.4、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.5、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)6、如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點A1,設(shè)∠A=.則∠A1=_______(用含的式子表示).7、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.8、某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;③從D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.9、在平面直角坐標系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當OE最小時,點E的縱坐標為______.10、如圖,在△ABC中,D是AC延長線上一點,∠A=50°,∠B=70°,則∠BCD=__________°.三、解答題(6小題,每小題10分,共計60分)1、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過點A的一條直線,且B,C在A,E的異側(cè),于點D,于點E(1)試說明:;(2)若直線AE繞點A旋轉(zhuǎn)到圖(2)位置時,其余條件不變,問BD與DE,CE的關(guān)系如何?請直接寫出結(jié)果;2、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.3、如圖,于于F,若,(1)求證:平分;(2)已知,求的長.4、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉(zhuǎn)到如圖(2)位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉(zhuǎn)到如圖(3)位置時,BD、AB、CB滿足什么樣關(guān)系式,請直接寫出你的結(jié)論.5、如圖,已知點B,F(xiàn),C,E在同一直線上,AB∥DE,BF=CE,AB=ED,求證:∠A=∠D.6、如圖,點D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.-參考答案-一、單選題1、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.2、D【分析】設(shè)交于點,過點作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進而即可求得【詳解】解:設(shè)交于點,過點作,如圖,∵∴∠E+∠F=85°故選D【點睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.3、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.4、C【分析】根據(jù)全等三角形的判定逐項判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項不符合題意,故選:C.【點睛】本題考查全等三角形的判定、對頂角相等,熟練掌握全等三角形的判定條件是解答的關(guān)鍵.5、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.6、B【分析】利用已知條件證明△ADE≌△ADC(SAS),得到∠DEA=∠C,根據(jù)外角的性質(zhì)可求的度數(shù).【詳解】解:∵AD是∠BAC的平分線,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B+,∴;故選:B【點睛】本題考查了全等三角形的性質(zhì)與判定,解決本題的關(guān)鍵是證明△ADE≌△ADC.7、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個三角形的面積相等.8、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計算每組線段當中較短的兩條線段之和,再與最長的線段進行比較,若和大于最長的線段的長度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.9、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.10、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項所給條件和全等三角形的判定定理進行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項符合題意;故選:D.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.二、填空題1、28【分析】延長交于,由證明,得出,得出,進而得出,即可得出結(jié)果.【詳解】如圖所示,延長交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.2、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點睛】本題考查了三角形的面積和三角形中線的性質(zhì),關(guān)鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.3、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.4、【分析】如圖(見解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,正確找出兩個全等三角形是解題關(guān)鍵.5、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學生具備運用這些定理進行推理的能力.6、【分析】根據(jù)角平分線的定義、三角形的外角的性質(zhì)計算即可.【詳解】∵∠ABC與∠ACD的平分線交于A1點,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案為:.【點睛】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.7、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運用所學知識解決問題.8、5【分析】將題目中的實際問題轉(zhuǎn)化為數(shù)學問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應(yīng)用,熟練應(yīng)用全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.9、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當OE⊥CD時,OE最小,據(jù)此求出坐標即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.10、120【分析】根據(jù)三角形的外角性質(zhì),可得,即可求解.【詳解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案為:120【點睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.三、解答題1、(1)證明見解析;(2)BD=DE-CE,理由見解析.【分析】(1)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AE=AD+DE,所以BD=DE+CE;(2)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AD+AE=BD+CE,所以BD=DE-CE.【詳解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)與、的數(shù)量關(guān)系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【點睛】此題主要考查全等三角形的判定和性質(zhì),常用的判定方法有SSS,SAS,AAS,HL等.這種類型的題目經(jīng)??嫉?,要注意掌握.2、見解析【分析】證明△BAC≌△BDC即可得出結(jié)論.【詳解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中,∴△BAC≌△BDC,∴AC=DC.【點睛】本題考查角平分線的意義及全等三角形的判定與性質(zhì),解題關(guān)鍵是掌握角平分線的性質(zhì)及全等三角形的判定與性質(zhì).3、(1)證明見解析;(2)6【分析】(1)由題所給條件可得,即得ED=DF,則可得,則,故平分.(2)由(1)問所得條件,得AF=AE=8,則AB=8-2=6.【詳解】(1)∵于于F,∴(HL)∴ED=DF∵于于F,AD=AD∴(HL)∴故平分.(2)∵BE=CF∴AF=AC-BE=10-2=8∴AE=AF=8∴AB=AE-BE=8-2=6.【點睛】本題考查了直角三角形全等的判定,所應(yīng)用的定理為斜邊、直角邊定理:斜邊和一條直角邊分別相等的兩個直角三角形全等(簡寫成HL).4、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據(jù)等角的余角相等及等式的性質(zhì)可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論