版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
socialand.
policy··
Econ。mico●
rethunk
ExpertInsights
PERSPECTIVEONATIMELYPOLICYISSUE
VEGARDM.NYGAARD,ANUJINNERGUI,JONATHANW.WELBURN
Macroeconomic
Implicationsof
ArtificialIntelligence
August2025
PE-A3888-3
ThispublicationhascompletedRAND’sresearchquality-assurance
processbutwasnotprofessionallycopyedited.
Formoreinformationonthispublication,visit
/t/PEA3888-3
.
AboutRAND
RANDisaresearchorganizationthatdevelopssolutionstopublicpolicychallengestohelpmakecommunitiesthroughouttheworldsaferandmoresecure,healthierandmoreprosperous.RANDisnonprofit,nonpartisan,andcommittedtothepublicinterest.TolearnmoreaboutRAND,visit
.
ResearchIntegrity
Ourmissiontohelpimprovepolicyanddecisionmakingthroughresearchandanalysisisenabledthroughourcorevaluesofqualityandobjectivityandourunwaveringcommitmenttothehighestlevelofintegrityandethicalbehavior.Tohelpensureourresearchandanalysisarerigorous,objective,andnonpartisan,wesubjectourresearchpublicationstoarobustandexactingquality-assuranceprocess;avoidboththeappearanceandrealityoffinancialandotherconflictsofinterestthroughstafftraining,projectscreening,andapolicyofmandatorydisclosure;andpursuetransparencyinourresearchengagementsthroughourcommitmenttotheopenpublicationofourresearchfindingsandrecommendations,disclosureofthesourceoffundingofpublishedresearch,andpoliciestoensureintellectualindependence.Formoreinformation,visit
/about/research-integrity
.
RAND’spublicationsdonotnecessarilyreflecttheopinionsofitsresearchclientsandsponsors.
PublishedbytheRANDCorporation,SantaMonica,Calif.
?2025RANDCorporation
RANDeisaregisteredtrademark.
LimitedPrintandElectronicDistributionRights
Thispublicationandtrademark(s)containedhereinareprotectedbylaw.ThisrepresentationofRANDintellectualpropertyisprovidedfornoncommercialuseonly.Unauthorizedpostingofthispublicationonlineisprohibited;linkingdirectlytoitswebpageonisencouraged.PermissionisrequiredfromRANDtoreproduce,orreuseinanotherform,anyofitsresearchproductsforcommercialpurposes.Forinformationonreprintandreusepermissions,visit
/about/publishing/permissions
.
AboutThisPaper
iii
Astheworld,andtheUnitedStatesinparticular,confrontsthechallengesofeconomic
mobility,healthandlongevity,andnewfrontiersoftechnologyandhumanwell-being,havewedesignedoursocialandeconomicsystemstoeffectivelyaddresstheseconvergences?RANDisaddressingthesequestionsthroughaneffortcalledtheSocialandEconomicPolicyRethinktotransformtheapproachtosolvingsocialandeconomicpolicyproblems.Thebroadervolume
encompassessevenpublicationsthatdescribekeysocialandeconomicpolicystakesforpolicyonartificialintelligence(AI)adoption,examinehowpolicymakerscanaccountforrapidAI
capabilitiesdevelopmentandadoptioninandacrosssectors,andshowcasehowindustryand
policyleaderscanresponsiblymeetthechallengesofaneraoftransformativeAI.Thisreport
speakstotheboundsandconditionsforAIadoption,byexploringthepromiseofenhanced
productivitygainsfromAIthatcouldelevateincomesandthepotentialforsubstantiallabor
displacement,particularlyinsectorswithhighriskofautomationfromAI.Thispiecewillbeofinteresttopolicymakersatalllevels,aswellasindustryandcommunitystakeholders.
RANDSocialandEconomicWell-Being
RANDSocialandEconomicWell-BeingisadivisionofRANDthatseekstoactivelyimprovethehealthandsocialandeconomicwell-beingofpopulationsand
communitiesthroughouttheworld.
Funding
FundingforthisresearchwasprovidedbythecontributionsoftheRANDSocialand
EconomicPolicyAdvisoryBoard;generousgiftsbyFrankM.Clark,MichaelJ.Critelli,WilliamA.Downe,JiheeKimHuhandPeterYunHuh,andtheDonaldM.JamesFamilyFoundation;
andincomefromtheoperationofRANDSocialandEconomicWell-Being.
Acknowledgments
WethanktheentireSocialandEconomicPolicyRethinkteamfortheirinsightsthroughout
thisproject.Thepaper’speerreviewers,KeithCraneandSalilGunashekar,providedthoughtfulandinsightfulcommentsonanearlierdraft,whichledtosubstantialimprovements.Weextend
ourappreciationtotheleadershipofsocialandeconomicpolicyatRAND,AnitaChandra,PeterHusseyandHeatherSchwartz;totheRANDSocialandEconomicPolicyboardfortheirsupportandadvice;tothemembersoftheRethinkfinancialservices,healthcare,andclimateandenergy
iv
workinggroupsfortheiradviceandscoping;toLisaCoeforhercarefuledits;andtothemembersoftheRethinkteamwhoseinputhelpedguidethisanalysis.
Summary
v
TheincreasingintegrationofArtificialIntelligence(AI)intotheeconomypresentsbothchallengesandopportunities,withsignificantimplicationsforeconomicgrowthand
employment.Inthisperspective,weexplorethedualeffectsofAI:thepromiseofenhancedproductivitygainsthatcouldelevateincomes,andthepotentialforsubstantiallabor
displacement,particularlyinsectorswithhighriskofautomationfromAI.1
While“AI”isoftenreferencedinthesingular,thetermencompassesabroadandgrowing
rangeofcapabilitiesaswellasthewaysuchcapabilitiesareutilizedindifferentcontexts.We
focusontheadoptionofthebroadclassofAItechnologiesinthisperspectivethatencompassesMachineLearning,DeepLearning,NaturalLanguageProcessing,LargeLanguageModels,andGenerativeAI.WhileAIwillimpactallcountries,thisperspectivefocusesexclusivelyonthe
impactontheU.S.economyandtheU.S.labormarket.Thus,wedonotexamineglobalimpactsofAI,includinghowAIadoptionvariesacrosscountriesortheimplicationsofAIoncross-
bordercapitalandlaborflows.
WefirstdiscusstheuncertainimpactofAIonfutureproductivitygrowthandthenusean
economicgrowthmodeltoexaminetheimpactofdifferentproductivitygrowthscenariosfortheU.S.economy,includingimplicationsforgrossdomesticproduct(GDP)percapitaandfederal
governmentdebt.Next,weutilizedatafromtheBusinessTrendsandOutlookSurvey(BTOS)toassessthecurrentlandscapeoftheadoptionofAIacrossvarioussectors.Usingrecentresearch
findings,weidentifyoccupationalgroupsthataremostsusceptibletoautomationstemmingfromAI.Despiteconcernsoverjoblosses,preliminaryfindingssuggestthatAImayinitially
complementratherthanreplacehumanlabor,althoughthistrendcouldshiftasthetechnologyadvances.
IntheeventthatAIleadstosignificantlabordisplacement,policymakersmaywantto
considerusingactivelabormarketprograms,suchasworkforceretrainingprograms,tomitigatelong-termincomelossesfordisplacedworkers.Wereviewtheliteratureonworkforceretrainingprograms,whichfindsmixedevidenceontheirefficacy.Forexample,trainingprogramstendtobelesseffectiveforolderworkers,andreturnsareoftenhigherforquantitativecourses.These
findingssuggestthatAI-inducedlayoffsmaytriggersignificantincomelossesforolderworkers,withlong-termnegativeimplicationsforwealthaccumulationandfinancialpreparednessfor
retirement.
1Fordetails,seeMauroCazzanigaetal.,"Gen-AI:ArtificialIntelligenceandtheFutureofWork,"IMF,2024;andFrancescoFilippuccietal.,"TheimpactofArtificialIntelligenceonproductivity,distributionandgrowth:Key
mechanisms,initialevidenceandpolicychallenges,"OECDArtificialIntelligencePapers,2024.
vi
OurfindingsunderscoretheimportanceofproactivemeasurestomonitorAI’simpactonproductivity,labormarkets,andtheoverallhealthoftheU.S.economy.Weadvocatefor
improveddatacollectiontoinformfuturestrategiestoaddresseconomicissuesrelatedtoAI.
Additionally,policymakersmaywanttoexaminewhichretrainingprogramsaresuccessfulat
increasingthelikelihoodofreemploymentfollowinganAI-inducedlayoff,includingthespecificcoursesthataregiven,andshouldalsoexaminehowtheefficacyvarieswithworker
characteristicssuchasage,educationalattainment,occupation,andsectorofemployment.
KeyFindings
Thekeyfindingsfromouranalysisandreviewofrecentliteratureareasfollows:
?AImayinducehigherproductivitygrowth:WhilerecentresearchsuggestthatAImayacceleratefutureproductivitygrowth,thereisnoconsensusonthemagnitudeoftheimpact.TherangeofimpactspredictedbydifferentstudiessuggestthatAImightadd0.1–1.5percentagepointstoannualproductivitygrowthintheU.S.overthe
nextdecade.
?AI-inducedhigherproductivitygrowthmayincreaseper-capitaGDP:Realper-capitaGDPcouldbenearly$7,000higherby2035intheeventthatAIsuccessfullyincreasesfutureproductivityby0.5percentagepointsperyear.
?Datacenterconstructionmaysupportmillionsofjobs:Theconstruction,
maintenance,andoperationofdatacentersmaygeneratesubstantialdirectand
indirectregionaleconomicbenefits,supportmillionsofjobs,andcontributebillionstoannualGDP.However,theprojectedcomputationalresourcesrequiredtooperatethedatacentersandtrainfutureAIsystemsmightrequiresignificantamountsof
powergenerationthatcouldcomplicatethegoalofdecarbonizingenergyproduction.
?EarlyadoptionofAIappearstohavecomplementedworkerproductivity,butfuturelabormarketimpactsareuncertain:AsofFebruary2024,surveydata
indicatethatAIwasmorelikelytoincreaseratherthandecreaseemployment,
suggestingthatAIwascomplementingworkerproductivityratherthansubstitutingforhumantasksacrossawiderangeofsectors.However,impactsmaychangeasAIcapabilitiescontinuetoadvanceandadoptioncontinuestodeepen.
?MoredatacollectionisnecessarytounderstandtheimpactofAIonlabor
marketsandtheefficacyofworkforceretrainingprograms:PolicymakersmaywanttomonitortheeffectsofAIonlabormarkets,includingtrackingwhetherAIisimprovinglaborproductivity,examininghowAIisbeingemployedindifferent
sectors,trackingwhattypeofoccupationsarebeingdisplacedbyAI,andexamininghowlongittakesworkersthathaverecentlybeendisplacedbyAItofindanewjob.AsAIpresentsnewlabormarketchallenges,moreworkwillalsobeneededto
understandwhetheractivelabormarketpolicies,includingworkforceretraining
programs,areeffectiveatincreasingthereemploymentlikelihoodforworkersthatweredisplacedbyAI.
Contents
vii
AboutThisPaper iii
SocialandEconomicWell-Being iii
Funding iii
Acknowledgments iii
Summary v
KeyFindings vi
Figures viii
MacroeconomicImplicationsofArtificialIntelligence 1
DualEffectsofArtificialIntelligence 1
Takeaways 21
Abbreviations 22
References 23
Figures
viii
Figure1.ProjectedAI-DrivenGrowthinRealGDPperCapita(constant2024dollars) 4
Figure2.ProjectedAI-DrivenReductionintheFederalDebtBurden 5
Figure3.DataCenterConstructionSpending(%ofGDP) 6
Figure4.NumberofDataCentersbyState 7
Figure5.PercentChangeintheShareofDataCenterEmploymentinTotalEmployment
(2016Q2–2024Q2) 8
Figure6.ShareofBusinessesbySectorCurrentlyUsingAItoProduceGoodsandServices 12
Figure7.ShareofBusinessesbySectorReportingChangesinEmploymentDuetoAIAdoption
15
Figure8.ShareofBusinessesbySectorwhereAIhasReplacedTasksPreviouslyPerformedby
Workers 16
Figure9.ShareofBusinessesbySectorPlanningtoReplaceHumanTaskswithAI 17
Figure10.PercentagePointIncreaseintheShareofBusinessesbySectorPlanningtoReplace
HumanTasksbyAI 18
MacroeconomicImplicationsofArtificialIntelligence
1
DualEffectsofArtificialIntelligence
TheincreasingintegrationofArtificialIntelligence(AI)intotheeconomypresentsboth
challengesandopportunities,withsignificantimplicationsforeconomicgrowthand
employment.Inthisperspective,weexplorethedualeffectsofAI:1)thepromiseoflarge
productivitygainsthatcouldraiseaverageincomes;and2)thepotentialforAI-induced
automationofworkertasksthatcouldbringaboutsignificantjoblossesacrossmultiple
economicsectors,includingtheservicessector,whichcurrentlymakesupnearly80percentofthetotalU.S.workforce.
While“AI”isoftenreferencedinthesingular,thetermencompassesabroadandgrowing
rangeofcapabilitiesaswellasthewaysuchcapabilitiesareutilizedindifferentcontexts.Inthisperspective,wefocusontheadoptionofthebroadclassofAItechnologiesthatencompasses
MachineLearning(ML),DeepLearning(DL),NaturalLanguageProcessing(NLP),LargeLanguageModels(LLMs),andGenerativeAI(GenAI).2
ThePromiseofAI-InducedProductivityGrowth
Growthintotalfactorproductivity(TFP)—theaveragereal(inflation-adjusted)outputper
unitofcombinedlaborandcapitalservices—haslongbeenamajorengineofeconomicgrowthintheU.S.—alongwithgrowthinboththecapitalstockandthelaborforce3—andhasbeena
keycontributortoincreasesinper-capitaincomelevels.However,TFPgrowthhasbeenona
downwardtrajectoryinrecentdecades,aslowdownthatisprojectedtocontinuegoingforward.TheCongressionalBudgetOfficeforecasts1.1percentannualgrowthinTFPduringthenext
threedecades,downfromanaverageof1.3percentduringtheprecedingthreedecades.4Severalreasonscontributetothisprojectedproductivityslowdown,includingaslowdowninthegrowthofeducationalattainmentandlowerfederalgovernmentspendingasashareofGDPon
2Fordetails,seeJonathanW.Welburn,MayaBuenaventura,VegardM.Nygaard,ChandraGarber,LeahDion,
PedroNascimentodeLima,AntonShenk,AnujinNergui,BenjaminBoudreaux,CarterPrice,BebaCebralic,SeanMann,FlanneryDolan,andKarishmaV.Patel,RethinkingSocialandEconomicPolicyintheAgeofGeneral-
PurposeArtificialIntelligence:NavigatingtheTradeoffsofAIAdoption,RANDCorporation,RR-A3888-2,forthcoming.
3TFPhasaccountedfor34percentofaveragegrowthinoutputperworkeracrossWesternCountries(ScottL.Baier,GeraldP.DwyerJr.,andRobertTamura,“HowImportantAreCapitalandTotalFactorProductivityforEconomicGrowth,”EconomicInquiryVol.44:1,2006).
4CBO,"TheLong-TermBudgetOutlook:2025to2055,"2025b.
2
infrastructure,education,training,andR&D.5Thisprojectedproductivitygrowthslowdowncouldhavesignificantnegativeeconomicandfiscalimplications,includingaslowdowninthegrowthofper-capitaGDP—themostcommonlyusedproxyforaveragelivingstandards6—
slowergrowthintaxrevenues,andincreasedfederalindebtednessiffiscalpoliciesarenotadjustedtocompensateforlowerrevenues.7
ImpactofAI-InducedHigherProductivityGrowthonper-capitaGDPandFederalDebt
WhileongoingadvancesinAIhasthepotentialtoacceleratefutureTFPgrowth,thereisnoconsensusonthemagnitudeofthatimpact.SomestudiessuggestthatAIwillleadtoasharp
accelerationinproductivitygrowth,potentiallyboostingU.S.laborproductivityby1.5
percentagepointsperyear,8althoughbarrierstoadoptionmaydelaygrowth.9Otherreports
predictthatAIwillhavemore-modestimplicationsforfutureproductivitygrowth.Basedona
task-basedaggregationframework,AcemoglupredictsthatAIwilladdlessthan0.1percentagepointstoannualU.S.TFPgrowthoverthenexttenyears.10AghionandBunelobtainmore
optimisticpredictions,estimatingthatAIwillincreaseaggregateproductivitygrowthby0.8–1.3percentagepointsperyearoverthattimeperiod,andFillippuccietal.predictthatAIwilladd
0.4–0.9percentagepointstoannuallaborproductivitygrowth.11
GiventheimportanceoftheprojectedgrowthinTFPforthefutureeconomicsituationintheU.S.andthegovernment’sfiscaloutlook,weexaminetheimplicationsofacceleratingfuture
TFPgrowthbeyondthe1.1percentannuallong-rungrowthrateassumedunderCBO’sbaselineprojection.Specifically,weconsideranAIscenarioinwhichU.S.TFPgrowsbyanadditional0.5percentagepointsperyear.WhiletheAIscenariorepresentsasharpincreaseinTFPgrowth
5SeeVollrathandCBOfordetailsonthereasonsfortheprojectedslowdowninTFPgrowth(DietrichVollrath,
"FullyGrown:WhyaStagnantEconomyIsaSignofSuccess,"UniversityofChicagoPress,2020.;andCBO,"TheBudgetandEconomicOutlook:2025to2035,"2025a).
6SeeJonesandKlenowaswellasFalcettoniandNygaardfordetailsonthestrengthsandweaknessesofGDPpercapitaasameasureofaveragelivingstandards(CharlesI.JonesandPeterK.Klenow,“BeyondGDP?Welfare
AcrossCountriesandTime,”AmericanEconomicReview,Vol.106:9,2016;andElenaFalcettoniandVegardM.Nygaard,“AComparisonofLivingStandardsAcrosstheUnitedStatesofAmerica,”InternationalEconomic
Review,Vol.64:2,2023).
7CBO,“HowChangesinEconomicConditionsMightAffecttheFederalBudget:2025to2035,”2025d.
8J.BriggsandD.Kodani,“ThePotentiallyLargeEffectsofArtificialIntelligenceonEconomicGrowth,”GoldmanSachsEconomicsResearch,2023.
9GoldmanSachs,“UpgradingOurLonger-RunGlobalGrowthForecaststoReflecttheImpactofGenerativeAI,”2023b.McKinsey&CompanyestimatethatworkautomationresultingfromthecombinationofGenAIandothertechnologiescouldadd0.5–3.4percentagepointsannuallytoglobalproductivitygrowth(MichaelChuietal.,“TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier,”McKinsey&Company,2023).
10DaronAcemoglu,“TheSimpleMacroeconomicsofAI,”EconomicPolicyVol.39(120),2024.
11PhilippeAghionandSimonBunel,“AIandGrowth:WhereDoWeStand,”FederalReserveBankofSan
Francisco,2024;andFrancescoFilippucci,PeterGal,andMatthaisSchief,“MiracleorMyth?Assessingthe
macroeconomicproductivitygainsfromArtificialIntelligence,”O(jiān)ECDArtificialIntelligencePapers,Vol.29,2024.
3
relativetothebaselineprojection,itiswellwithintheboundspredictedbytheliteratureonthepotentialimpactsofAIonfutureproductivitygrowth.Wehencedeemthis“highgrowth”AIscenarioasafeasible,albeitoptimistic,futurescenario,atleastintheshortrunasbarriersto
adoptionmightdelaytheaccelerationinproductivitygrowth.
WeuseageneralequilibriumeconomicgrowthmodeldevelopedbyCBOtoforecastthe
impactofhigherTFPgrowthonfutureGDPpercapita,federalgovernmentdeficits,andthe
interestrateonfederaldebt.12Thesevariablesenableustoforecastthefuturefederaldebt
burden,calculatedastheratiooffederaldebtheldbythepublictoGDP.Thisapproachhas
certainlimitations.Forexample,itassumesthatTFPgrowthincreasesduetoAI,butitdoesnotaccountforanyinvestmentsorpolicychangesthatmightbenecessarytoachievethisTFP
growth.Additionally,itdoesnotaccountforpotentialadverseimpactsonlabormarkets,asdiscussedmoreinthefollowingsection.Thus,thisanalysisonlyprovidesanestimateofthedirectimpactofAI-inducedproductivitygrowthontheeconomy.
Figure1plotstheprojectionsforrealpercapitaGDPmeasuredinconstant,2024dollars,
wherethesolidblacklinecorrespondstothebaselineforecastbyCBOandthedashedbluelinecorrespondstotheAIscenario(i.e.,higherTFPgrowth).AlthoughtheAIscenarioaddsonly0.5percentagepointstoannualTFPgrowth,theimplicationforrealper-capitaGDPisconsiderablebecauseofcompounding,wherebygainsinincomewillaccrue,withinterest,overtime.Thisisevidentbythedivergentpathsofthetwoprojections,whichshowsthatrealper-capitaGDP
couldbenearly$7,000higherby2035undertheAIscenariocomparedtothebaselinescenario.Notably,therealper-capitaGDPgapbetweenthesetwoscenarioswouldcontinuetogrowifAIleadstoasustainedaccelerationinTFPgrowthbeyondthe2035projectionwindowconsideredhere.
12CBO,"WorkbookforHowChangesinEconomicConditionsMightAffecttheFederalBudget:2025to2035,"2025c.
4
Figure1.ProjectedAI-DrivenGrowthinRealGDPperCapita(constant2024dollars)
SOURCE:RANDAnalysisusingCBO(2025b)andCBO(2025c).
NOTES:Thebaselineforecast—solidblackline—usesCBO’sbaselinepotentialTFPgrowthrateprojection.TheAIScenarioproducedbyRAND—dashedblueline—assumesthatpotentialTFPwillgrowbyanadditional0.5
percentagepointsperyearoverthistimeperiodbeyondtheTFPgrowthassumedunderCBO’sbaseline.WedeemthehighgrowthAIscenarioasafeasible,albeitoptimistic,futurescenariobasedontheboundspredictedbythe
literatureonthepotentialimpactsofAIonfutureproductivitygrowth.WeuseageneralequilibriumeconomicgrowthmodeldevelopedbyCBOtoquantifytheimpactofhigherTFPgrowthonrealGDPpercapita.Notably,theforecastsaresubjecttouncertaintybecauseofthelong,ten-year,projectionwindow.
Figure1showsthatAIhasthepotentialtoincreaseaverageincomesintheU.S.However,asthegainsfromAIarelikelytobeunevenlydistributedacrossindividuals,AIcould
simultaneouslyleadtobothhigheraverageincomesandhigherincomeinequality.Forexample,AcemoglupredictsthatAIwillwidenthegapbetweencapitalandlaborincome.13Asdiscussedmoreinthefollowingsection,AImayalsoleadtoreductionsinincomeforalargeshareof
individualsifAIresultsinsignificantlabordisplacement.
WenextexaminetheimpactofAI-inducedTFPgrowthonfuturefederaltaxrevenuesandexpenditures,alongwiththeimplicationsforfederalgovernmentindebtedness,assumingno
changesincurrentfiscalpolicies.Federaldebtheldbythepublicwasat98percentofGDPin2024.DatafromCBOshowthatthisisthesecond-highestleveloffederalindebtednessin
relationtoGDPthattheU.S.economyhaseverwitnessed,surpassedonlybytheexperience
13Acemoglu,2024.
5
followingWorldWarIIwhenfederaldebtclimbedto106percentofGDP.14AsillustratedbytheblacksolidlineinFigure2,federaldebt-to-GDPisprojectedtosurpassthatlevelinthenearfuture,withCBO’smostrecentforecastprojectingthatitwillreach118percentby2035.15
Figure2.ProjectedAI-DrivenReductionintheFederalDebtBurden
FederalDebtHeldbythePublic(%of
120
Projection
110
100
GDP)
90
80
70
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
Baseline(CBO)AIScenario
SOURCE:RANDAnalysisusing(CBO,2025b)andCBO(2025c).
NOTES:Thebaselineforecast—solidblackline—usesCBO’sbaselinepotentialTFPgrowthrateprojection.TheAIScenarioproducedbyRAND—dashedblueline—assumesthatpotentialTFPwillgrowbyanadditional0.5
percentagepointsperyearoverthistimeperiodbeyondtheTFPgrowthassumedunderCBO’sbaseline.WedeemthehighgrowthAIscenarioasafeasible,albeitoptimistic,futurescenariobasedontheboundspredictedbythe
literatureonthepotentialimpactsofAIonfutureproductivitygrowth.WeuseageneralequilibriumeconomicgrowthmodeldevelopedbyCBOtoquantifytheimpactofhigherTFPgrowthonthefuturedebt-to-GDPratio.Notably,theforecastsaresubjecttouncertaintybecauseofthelong,ten-year,projectionwindow.
Weillustratetheimpactofthe“highgrowth”AIscenariobythedashedbluelineinFigure2.ThissustainedhigherTFPgrowthcouldleadtosubstantiallyhighertaxreceiptsanda
significantlylowerriseinthedebt-to-GDPratio:107percentofGDPby2035,comparedto118percentunderCBO’sbaselineprojection.Thiscouldhavelargepositivefiscalimplicationsfor
14FordetailsontheevolutionoffederaldebtsinceWorldWarII,alongwithestimatesonwhatwouldberequiredtoreducethefuturefederaldebtburden,seeVegardM.Nygaard,CarterPrice,andAkshayaSuresh,"StrategiesforReducingtheBurdenofFederalDebt:HowtheU.S.ReducedtheDebtBurdenFollowingWWII,AndWhatIt
WouldTaketoDoSoAgain,"RANDCorporation,WR-A4183-1,forthcoming.
15CBO,2025b.
6
theU.S.economy,includinga$2trillionnominalcumulativereductioninfederaldeficitsoverthecourseoftheten-yearprojectionwindowrelativetobaselineforecasts.16
AIInfrastructureInvestment
WithoutsubstantialimprovementsintheenergyefficiencyofAImodels,maintainingthe
projectedpaceofAIinnovationwillrequirelargeinvestmentsindatacenterstoaccommodate
thegrowthincomputingdemandrequiredtotrainandrunAImodels.AsshowninFigure3,datacenterconstructionasashareofGDPhasalreadyincreasedsubstantiallysince2021—oneyearbeforethereleaseofChatGPT—morethandoublingfromabout0.05percentin2021toabout
0.11percentin2024.Spendingondatacenterconstructionisprojectedtocontinuetoriseinthefuture,reachingroughly0.15percentofGDPbytheendof2026.
Figure3.DataCenterConstructionSpending(%ofGDP)
SOURCE:RANDAnalysisusinghistoricalandprojecteddataondatacenterconstructionspendingarefrom,respectively,theU.S.CensusBureau(2025c)andAIA(2025).HistoricalandprojecteddataonGDParefrom,respectively,U.S.BureauofEconomicAnalysis(NationalIncomeandProductAccounts,Table1.1.5)andCBO(2025a).
NOTE:DatacenterconstructionspendingprojectionsarebasedontheAIA(2025)ConsensusConstructionForecast,indicatinga21.9percentincreasein2025anda14.6percentincreasein2026.
16CBO,2025c.
7
ThisgrowthinAIinfrastructurehasbeengeographicallyconcentrated,withVirginia,Texas,andCaliforniahostingthelargestnumberofdatacenters(Figure4).Thesethreestatesalone
accountforaboutone-thirdofthe3,664datacenters,asofApril2025.
Figure4.NumberofDataCentersbyState
SOURCE:RANDAnalysisusingDataCenterMap(2025)
NOTES:Thisfiguredisplaysstateswith50ormoredatacenters.Thetotalcountofdatacentersacrossall50statesandtheDistrictofColumbiais3,664,asofApril2025.
Theconstruction,maintenance,andoperationofdatacenterscangeneratesubstantialdirectandindirectregionaleconomicbenefits.Forexample,Figure5showsthepercentagechangeintheshareofdatacenteremploymentintotalemploymentbetween2016Q2and2024Q2,with
statessuchas
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年跨區(qū)域水資源共享平臺(tái)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年自駕旅游市場(chǎng)分析與發(fā)展可行性研究報(bào)告
- 2025年數(shù)字營(yíng)銷傳播平臺(tái)創(chuàng)建項(xiàng)目可行性研究報(bào)告
- 羊苗買賣合同范本
- 瓜果進(jìn)貨合同范本
- 組隊(duì)騎摩托協(xié)議書
- 線下補(bǔ)充協(xié)議合同
- 軍工企業(yè)物資供應(yīng)商專管員考核題庫(kù)
- 文化演出策劃崗位面試題含答案
- 華為人力資源經(jīng)理面試題詳解及答案
- 2025年植物標(biāo)本采集合同協(xié)議
- 2025天津市第二批次工會(huì)社會(huì)工作者招聘41人考試筆試參考題庫(kù)及答案解析
- 2025湖北武漢市蔡甸區(qū)總工會(huì)招聘工會(huì)協(xié)理員4人筆試試題附答案解析
- 膽管重復(fù)畸形健康宣教
- 2025秋人教精通版英語(yǔ)小學(xué)五年級(jí)上冊(cè)知識(shí)點(diǎn)及期末測(cè)試卷及答案
- 校園反恐防暴2025年培訓(xùn)課件
- 2026年安徽城市管理職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試模擬測(cè)試卷附答案
- 2025甘肅省水務(wù)投資集團(tuán)有限公司招聘企業(yè)管理人員筆試備考題庫(kù)附答案解析
- 2025山東壹通無(wú)人機(jī)系統(tǒng)有限公司暨三航無(wú)人系統(tǒng)技術(shù)(煙臺(tái))有限公司社會(huì)招聘筆試現(xiàn)場(chǎng)及筆試歷年參考題庫(kù)附帶答案詳解
- 2025年秋季學(xué)期國(guó)家開放大學(xué)《人文英語(yǔ)4》期末機(jī)考精準(zhǔn)復(fù)習(xí)題庫(kù)
- 神經(jīng)內(nèi)科三基考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論