版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、若直角三角形的兩邊長分別是方程的兩根,則該直角三角形的面積是(
)A.6 B.12 C.12或 D.6或2、如圖,一次函數(shù)y=-3x+4的圖象交x軸于點A,交y軸于點B,點P在線段AB上(不與點A,B重合),過點P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時,則點P的坐標為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)3、一元二次方程,配方后可形為(
)A. B.C. D.4、下列四組線段中,是成比例線段的是()A.0.5,3,2,10 B.3,4,6,2C.5,6,15,18 D.1.5,4,1.2,55、如圖1,矩形中,點為的中點,點沿從點運動到點,設,兩點間的距離為,,圖2是點運動時隨變化的關系圖象,則的長為(
)A. B. C. D.6、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.4二、多選題(6小題,每小題2分,共計12分)1、設點和B(,)是反比例函數(shù)圖象上的兩個點,當<<0時,<,則一次函數(shù)的圖象經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、下列方程中,有實數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=03、下列命題中真命題有(
)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形4、如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論中正確的是(
)A.S△ADB=S△ADC;B.當0<x<3時,y1<y2;C.如圖,當x=3時,EF=;D.當x>0時,y1隨x的增大而增大,y2隨x的增大而減小.5、下列說法正確的是(
)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質(zhì)地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人6、下列多邊形中,一定不相似的是(
)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、將方程(3x-1)(2x+4)=2化為一般形式為____________,其中二次項系數(shù)為________,一次項系數(shù)為________.2、若代數(shù)式有意義,則x的取值范圍是_____.3、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過B、D兩點,則b﹣k=_____.4、如圖,在中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當為直角三角形時,線段的長為________.5、如圖,已知在平面直角坐標系中,直線分別交軸,軸于點和點,分別交反比例函數(shù),的圖象于點和點,過點作軸于點,連結.若的面積與的面積相等,則的值是_____.6、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.7、對于任意實數(shù)a、b,定義一種運算:,若,則x的值為________.8、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.2、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標.3、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.4、如圖,在矩形中,對角線與相交于點E,過點A作,過點B作,兩線相交于點F.(1)求證:四邊形是菱形;(2)連接,若,求證:.5、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.6、用適當?shù)姆椒ń夥匠蹋?1).(2).-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,先將方程的兩根求出,然后對兩根分別作為直角三角形的直角邊和斜邊進行分情況討論,最終求得該直角三角形的面積即可.【詳解】解方程得,當3和4分別為直角三角形的直角邊時,面積為;當4為斜邊,3為直角邊時根據(jù)勾股定理得另一直角邊為,面積為;則該直角三角形的面積是6或,故選:D.【考點】本題主要考查了解一元二次方程及直角三角形直角邊斜邊的確定、直角三角形的面積求解,熟練掌握解一元二次方程及勾股定理是解決本題的關鍵.2、D【解析】【分析】由點P在線段AB上可設點P的坐標為(m,-3m+4)(0<m<),進而可得出OC=m,OD=-3m+4,結合矩形OCPD的面積為1,即可得出關于m的一元二次方程,解之即可得出m的值,再將其代入點P的坐標中即可求出結論.【詳解】解:∵點P在線段AB上(不與點A,B重合),且直線AB的解析式為y=-3x+4,∴設點P的坐標為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點P的坐標為(,3)或(1,1).故選:D.【考點】本題考查了一次函數(shù)圖象上點的坐標特征以及解一元二次方程,利用一次函數(shù)圖象上點的坐標特征及,找出關于m的一元二次方程是解題的關鍵.3、A【解析】【分析】把常數(shù)項移到方程右邊,再把方程兩邊加上16,然后把方程作邊寫成完全平方形式即可【詳解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故選:A.【考點】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.4、C【解析】【分析】根據(jù)各個選項中的數(shù)據(jù)可以判斷哪個選項中的四條線段不成比例,本題得以解決.【詳解】解:∵,故選項A中的線段不成比例,不符合題意;∵,故選項B中的線段不成比例,不符合題意;∵,故選項C中的線段成比例,符合題意;∵,故選項D中的線段不成比例,不符合題意,故選:C【考點】本題考查比例線段,解題的關鍵是明確題意,找出所求問題需要的條件.5、C【解析】【分析】先利用圖2得出當P點位于B點時和當P點位于E點時的情況,得到AB和BE之間的關系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當P點位于B點時,,即,當P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學生對函數(shù)圖象的理解與應用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關鍵是能正確理解題意,能從圖象中提取相關信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結合的思想方法.6、C【解析】【分析】根據(jù)菱形的性質(zhì),結合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質(zhì),中位線的性質(zhì),等腰三角形的性質(zhì)和判斷,平行線的性質(zhì),菱形的面積,三角形面積的計算,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)得出DF為△ABC的中位線,是解題的關鍵.二、多選題1、BCD【解析】【分析】根據(jù)反比例函數(shù)圖象的性質(zhì)得出k的取值范圍,進而根據(jù)一次函數(shù)的性質(zhì)得出一次函數(shù)y=?2x+k的圖象不經(jīng)過的象限.【詳解】解:∵點和B(,)是反比例函數(shù)圖象上的兩個點,當<<0時,<,∴<<0時,y隨x的增大而增大,∴k<0,∴一次函數(shù)y=?2x+k的圖象不經(jīng)過第一象限.故答案為:BCD.【考點】此題主要考查了一次函數(shù)圖象與系數(shù)的關系以及反比例函數(shù)的性質(zhì),根據(jù)反比例函數(shù)的性質(zhì)得出k的取值范圍是解題關鍵.2、ABC【解析】【分析】根據(jù)直接開方法可確定A選項正確;根據(jù)因式分解法可確定B選項正確;根據(jù)方程的判別式,當時,方程有兩個不等的實數(shù)根,當時,方程有兩個相等的實數(shù)根,當時,方程無實數(shù)根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數(shù)根,A選項正確;B.,解得:,,方程有實數(shù)根,B選項正確;C.,,,,方程有實數(shù)根,C選項正確;D.,,,,方程無實數(shù)根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關鍵.3、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設成立,那么結論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.4、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應邊相等得到,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標代入反比例解析式得:,即,由函數(shù)圖象得:當時,,選項B錯誤;當時,,,即,選項C正確;當時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標與圖形性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握函數(shù)的性質(zhì)是解本題的關鍵.5、ACD【解析】【分析】根據(jù)隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據(jù)計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質(zhì)地均勻的硬幣兩次,所有可能出現(xiàn)的結果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據(jù)計算公式該項人數(shù)等于該項所占百分比乘以總人數(shù),,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數(shù),根據(jù)等可能事件的概率公式求解是解題關鍵.6、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.三、填空題1、
3x2+5x-3=0
3
5【解析】【分析】將方程展開,化簡后即可求解.【詳解】將,開展為一般形式為:;則可知一次項系數(shù)為5,二次項系數(shù)為3,故答案為:,3,5.【考點】本題主要考查了將一元二次方程化為最簡式以及判斷方程各項系數(shù)的知識,熟記相關考點概念是解答本題的關鍵.2、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數(shù).注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義;當二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.3、2﹣.【解析】【分析】連接OB,過點B作BE⊥x軸于點E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對等邊可得出OD=OB,進而可得出點D的坐標,在Rt△BOE中,通過解直角三角形可得出點B的坐標,由點B,D的坐標,利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結論.【詳解】解:連接OB,過點B作BE⊥x軸于點E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點D的坐標為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點B的坐標為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點】此題考查的是正方形的性質(zhì)、等腰三角形的判定、直角三角形的性質(zhì)和求一次函數(shù)的解析式,掌握正方形的性質(zhì)、等角對等邊、30°所對的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關鍵.4、或【解析】【分析】(1)分別在、、中應用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設,則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當時,連接、交于點,過點作于,如圖2:設,則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學思想.5、2.【解析】【分析】過點作軸于.根據(jù)k的幾何意義,結合三角形面積之間的關系,求出交點D的坐標,代入即可求得k的值.【詳解】如圖,過點作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,
∴,∴.易證,從而,即的橫坐標為,而在直線上,∴∴.故答案為2【考點】本題是一次函數(shù)與反比例函數(shù)的交點問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點問題,關鍵是根據(jù)兩個三角形的面積相等列出k的方程.6、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎.7、或2【解析】【分析】根據(jù)新定義的運算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點】本題考查新定義運算、解一元二次方程,根據(jù)題意理解新定義運算是解題的關鍵.8、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關鍵是證明PE=DF,PF=CF.四、解答題1、見解析【解析】【分析】先根據(jù)四邊形是平行四邊形且得到平行四邊形是菱形,即可得到,再根據(jù),,證明四邊形是平行四邊形,即可得到平行四邊形是矩形.【詳解】證明:∵四邊形是平行四邊形且∴平行四邊形是菱形∴,即又∵,.∴四邊形是平行四邊形,∴平行四邊形是矩形.【考點】本題主要考查了平行四邊形的判定,矩形的判定,菱形的性質(zhì)與判定,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標.【詳解】解:(1)作CM⊥y軸于M,如圖,當x=0時,y=x+2=2,則A(0,2),當y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度3、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點B(5,2),∴設AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點D(4,1);在△PCD中,|PC-PD|<CD,則當點P,C,D三點共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形,則△CAM是直角三角形,則①當點A為直角頂點時,如圖2,過點A作AC的垂線與y=交于點M,分別過點C,M作x軸的垂線,垂足分別為點F,G,由“一線三等角”模型可得△AFC∽△MGA,則AF:MG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋梁施工技術方案與質(zhì)量控制
- 食品營養(yǎng)成分分析及配餐技巧指導
- 民辦學校招生宣傳及管理工作總結
- 新媒體營銷平臺內(nèi)容運營方案
- 2025航空零部件行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025航空運輸行業(yè)區(qū)域競爭市場分割投資評估規(guī)劃研究報告
- 2025航空運輸業(yè)投資機遇及融資規(guī)劃研究報告
- 2025航空貨運領域現(xiàn)狀研究及將來藍圖與營銷策略研究報告
- 2025航空航天飛行器熱控系統(tǒng)行業(yè)市場現(xiàn)狀需求分析及投資評估規(guī)劃報告
- 《最可愛的人》學習導學案范本
- 安生生產(chǎn)法規(guī)定
- 2025湖北市政建設集團有限公司管理崗位公開競聘14人筆試參考題庫附帶答案詳解
- 2025年廣西專業(yè)技術人員繼續(xù)教育公需科目試題及答案
- DB13(J)-T 8557-2023 建設工程消耗量標準及計算規(guī)則(房屋修繕建筑工程)
- 《PLC基礎及應用》課件
- 綠色供應鏈管理手冊
- 南通市勞動合同(標準版)
- 工程管理知識培訓內(nèi)容課件
- (正式版)DB15∕T 490-2018 《地理標志產(chǎn)品 西旗羊肉》
- 重金屬形態(tài)轉化機制-洞察及研究
- 2025年人民檢察院公開招聘用制書記員考試題及答案
評論
0/150
提交評論