滬科版9年級(jí)下冊(cè)期末試卷附答案詳解(達(dá)標(biāo)題)_第1頁
滬科版9年級(jí)下冊(cè)期末試卷附答案詳解(達(dá)標(biāo)題)_第2頁
滬科版9年級(jí)下冊(cè)期末試卷附答案詳解(達(dá)標(biāo)題)_第3頁
滬科版9年級(jí)下冊(cè)期末試卷附答案詳解(達(dá)標(biāo)題)_第4頁
滬科版9年級(jí)下冊(cè)期末試卷附答案詳解(達(dá)標(biāo)題)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列各點(diǎn)中,關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)2、在一個(gè)不透明的盒子中裝有紅球、白球、黑球共40個(gè),這些球除顏色外無其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個(gè)球記錄顏色后放回.經(jīng)過多次試驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個(gè)數(shù)約為()A.12 B.15 C.18 D.233、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.4、下列圖形中,是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是()A. B. C. D.5、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°6、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm7、下列說法正確的是()A.?dāng)S一枚質(zhì)地均勻的骰子,擲得的點(diǎn)數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對(duì)角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復(fù)試驗(yàn),可以用頻率估計(jì)概率.8、中國(guó)有悠久的金石文化,印信是金石文化的代表之一.南北朝時(shí)期的官員獨(dú)孤信的印信是迄今發(fā)現(xiàn)的中國(guó)古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、小明和小強(qiáng)玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機(jī)出手一次,平局的概率為______.2、在一個(gè)暗箱里放入除顏色外其它都相同的1個(gè)紅球和11個(gè)黃球,攪拌均勻后隨機(jī)任取一球,取到紅球的概率是_____.3、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點(diǎn),則的最小值是______.4、斛是中國(guó)古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個(gè)圓,此圓外是一個(gè)同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長(zhǎng)為________尺.5、為了落實(shí)“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時(shí)段開設(shè)了與冬奧會(huì)項(xiàng)目冰壺有關(guān)的選修課.如圖,在冰壺比賽場(chǎng)地的一端畫有一些同心圓作為營(yíng)壘,其中有兩個(gè)圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為______cm.6、如果一個(gè)扇形的弧長(zhǎng)等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長(zhǎng)等于6,那么這個(gè)扇形的面積等于_____.7、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時(shí),A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出此時(shí)旋轉(zhuǎn)角α的度數(shù).2、在正方形ABCD中,過點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時(shí),請(qǐng)直接寫出EH的長(zhǎng).3、在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點(diǎn)P是線段OQ的“潛力點(diǎn)”已知點(diǎn)O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點(diǎn)”是_____________;(2)若點(diǎn)P在直線y=x上,且為線段OQ的“潛力點(diǎn)”,求點(diǎn)P橫坐標(biāo)的取值范圍;(3)直線y=2x+b與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,當(dāng)線段MN上存在線段OQ的“潛力點(diǎn)”時(shí),直接寫出b的取值范圍4、如圖,在⊙O中,點(diǎn)E是弦CD的中點(diǎn),過點(diǎn)O,E作直徑AB(AE>BE),連接BD,過點(diǎn)C作CFBD交AB于點(diǎn)G,交⊙O于點(diǎn)F,連接AF.求證:AG=AF.5、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學(xué)生對(duì)新冠疫情防控知識(shí)的了解程度,組織七、八年級(jí)學(xué)生開展新冠疫情防控知識(shí)測(cè)試(滿分為10分).學(xué)校學(xué)生處從七、八年級(jí)學(xué)生中各隨機(jī)抽取了20名學(xué)生的成績(jī)進(jìn)行了統(tǒng)計(jì).下面提供了部分信息.抽取的20名七年級(jí)學(xué)生的成績(jī)(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學(xué)生成績(jī)分析表:年級(jí)七年級(jí)八年級(jí)平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請(qǐng)根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級(jí)共有學(xué)生2000人,估計(jì)此次測(cè)試成績(jī)不低于9分的學(xué)生有多少人?(3)在所抽取的七年級(jí)與八年級(jí)得10分的學(xué)生中,隨機(jī)抽取2名學(xué)生在全校學(xué)生大會(huì)上進(jìn)行新冠疫情防控知識(shí)宣講,求所抽取的2名學(xué)生恰好是1名七年級(jí)學(xué)生和1名八年級(jí)學(xué)生的概率.6、如圖,在直角坐標(biāo)平面內(nèi),已知點(diǎn)A的坐標(biāo)(﹣2,0).(1)圖中點(diǎn)B的坐標(biāo)是______;(2)點(diǎn)B關(guān)于原點(diǎn)對(duì)稱的點(diǎn)C的坐標(biāo)是_____;點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)D的坐標(biāo)是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點(diǎn)F,使,那么點(diǎn)F的所有可能位置是______.7、對(duì)于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個(gè)公共點(diǎn)P,則稱點(diǎn)P是圖形M和圖形N的“關(guān)聯(lián)點(diǎn)”.已知點(diǎn),,,.(1)直線l經(jīng)過點(diǎn)A,的半徑為2,在點(diǎn)A,C,D中,直線l和的“關(guān)聯(lián)點(diǎn)”是______;(2)G為線段OA中點(diǎn),Q為線段DG上一點(diǎn)(不與點(diǎn)D,G重合),若和有“關(guān)聯(lián)點(diǎn)”,求半徑r的取值范圍;(3)的圓心為點(diǎn),半徑為t,直線m過點(diǎn)A且不與x軸重合.若和直線m的“關(guān)聯(lián)點(diǎn)”在直線上,請(qǐng)直接寫出b的取值范圍.-參考答案-一、單選題1、D【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故A錯(cuò)誤;B、(0,2)與(2,0)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故B錯(cuò)誤;C、(﹣2,﹣1)與(﹣2,1)關(guān)于x軸對(duì)稱,故C錯(cuò)誤;D、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),故D正確;故選:D.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).2、A【分析】由題意可設(shè)盒子中紅球的個(gè)數(shù)x,則盒子中球的總個(gè)數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計(jì)算公式計(jì)算即可.【詳解】解:設(shè)盒子中紅球的個(gè)數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個(gè)數(shù)是12,故選:A.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率以及概率求法的運(yùn)用,利用概率的求法估計(jì)總體個(gè)數(shù),利用如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗(yàn)中,隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率會(huì)穩(wěn)定于某個(gè)常數(shù)p,我們稱事件A發(fā)生的概率為p.3、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點(diǎn)睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.4、B【分析】根據(jù)“把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形”及“如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;B、是中心對(duì)稱圖形但不是軸對(duì)稱圖形,故符合題意;C、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;D、是軸對(duì)稱圖形但不是中心對(duì)稱圖形,故不符合題意;故選B.【點(diǎn)睛】本題主要考查中心對(duì)稱圖形及軸對(duì)稱圖形的識(shí)別,熟練掌握中心對(duì)稱圖形及軸對(duì)稱圖形的定義是解題的關(guān)鍵.5、B【分析】求出正五邊形的一個(gè)內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計(jì)算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點(diǎn)睛】本題考查了正多邊形和圓,求出正五邊形的一個(gè)內(nèi)角度數(shù)是解決問題的關(guān)鍵.6、C【分析】連接,過點(diǎn)作于點(diǎn),交于點(diǎn),先由垂徑定理求出的長(zhǎng),再根據(jù)勾股定理求出的長(zhǎng),進(jìn)而得出的長(zhǎng)即可.【詳解】解:連接,過點(diǎn)作于點(diǎn),交于點(diǎn),如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點(diǎn)睛】本題考查了垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.7、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會(huì)發(fā)生,通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,利用這些對(duì)四個(gè)選項(xiàng)一次判斷即可.【詳解】A項(xiàng):擲一枚質(zhì)地均勻的骰子,每個(gè)面朝上的概率都是一樣的都是,故A錯(cuò)誤,不符合題意;B項(xiàng):若AC、BD為菱形ABCD的對(duì)角線,由菱形的性質(zhì):對(duì)角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項(xiàng):概率很小的事件只是發(fā)生的概率很小,不代表不會(huì)發(fā)生,故C錯(cuò)誤,不符合題意;D項(xiàng):通過大量重復(fù)試驗(yàn)才能用頻率估計(jì)概率,故D錯(cuò)誤,不符合題意.故選B【點(diǎn)睛】本題考查概率的命題真假,準(zhǔn)確理解事務(wù)發(fā)生的概率是本題關(guān)鍵.8、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個(gè)正六邊形,里面有2個(gè)矩形,故選D.【點(diǎn)睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系,同時(shí)還考查了對(duì)圖形的想象力,難度適中.二、填空題1、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強(qiáng)玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強(qiáng)平局的概率為:,故答案為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、【分析】由題意可知,共有12個(gè)球,取到每個(gè)球的機(jī)會(huì)均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單事件的概率,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時(shí),的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時(shí),的值最小,,,,,.則的最小值是,故答案為:.【點(diǎn)睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.4、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長(zhǎng)為尺.故答案為:【點(diǎn)睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握?qǐng)A內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.5、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.6、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長(zhǎng)等于6,∴半徑r為=2,弧長(zhǎng)l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長(zhǎng)l看成底,R看成底邊上的高即可.7、(3,4)【分析】關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(diǎn)(-3,-4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(3,4),故答案為:(3,4).【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).三、解答題1、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當(dāng)點(diǎn)三點(diǎn)在一條直線上時(shí),由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,,則旋轉(zhuǎn)角.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.2、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點(diǎn)C作交BE于點(diǎn)M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當(dāng)∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點(diǎn)睛】本題考查正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差,掌握正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差是解題關(guān)鍵.3、(1);(2);(3)或【分析】(1)分別計(jì)算出OQ、PO和PQ的長(zhǎng)度,比較即可得出答案;(2)先判斷點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當(dāng)時(shí),當(dāng)時(shí),分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點(diǎn)求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點(diǎn)”,故答案為:P3(2)∵點(diǎn)P為線段OQ的“潛力點(diǎn)”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點(diǎn)P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點(diǎn)P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點(diǎn)P在直線y=x上,∴點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè)當(dāng)時(shí),過時(shí),即函數(shù)解析式為:此時(shí)則當(dāng)與半徑為2的圓相切于時(shí),則由而當(dāng)時(shí),如圖,同理可得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),同理:當(dāng)過則直線為在直線上,此時(shí)當(dāng)過時(shí),則所以此時(shí):綜上:的范圍為:1<b≤或<b<-1【點(diǎn)睛】本題考查的是新定義情境下的知識(shí)運(yùn)用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.4、見解析【分析】由題意易得AB⊥CD,,則有,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求證.【詳解】證明:∵AB為⊙O的直徑,點(diǎn)E是弦CD的中點(diǎn),∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【點(diǎn)睛】本題主要考查垂徑定理、平行線的性質(zhì)及圓周角定理,熟練掌握垂徑定理、平行線的性質(zhì)及圓周角定理是解題的關(guān)鍵.5、(1)(2)(3)【分析】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(2)用總?cè)藬?shù)乘以樣本中七、八年級(jí)不低于9分的學(xué)生人數(shù)和所占比例即可得,(3)根據(jù)列表法求概率即可.(1)根據(jù)抽取的20名七年級(jí)學(xué)生的成績(jī)找到第10個(gè)和第11個(gè)成績(jī)都是8,則中位數(shù)為8,即,根據(jù)條形統(tǒng)計(jì)圖可知9分的有6人,人數(shù)最多,則眾數(shù)為9,即(2)解:∵此次測(cè)試成績(jī)不低于9分的七年級(jí)學(xué)生有8人,八年級(jí)學(xué)生有9人∴此次測(cè)試成績(jī)不低于9分的學(xué)生有(人)(3)解:∵七年級(jí)得10分的有2人,八年級(jí)得10分的有3人設(shè)七年級(jí)的2人分別為,八年級(jí)的3人分別列表如下,根據(jù)列表可知,共有20種等可能結(jié)果,其中1名七年級(jí)學(xué)生和1名八年級(jí)學(xué)生的情形有12鐘

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論