成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第1頁
成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第2頁
成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第3頁
成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第4頁
成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

成都樹德中學(xué)(光華校區(qū))中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.問題發(fā)現(xiàn):(1)正方形ABCD和正方形AEFG如圖①放置,AB=4,AE=2.5,則=___________.問題探究:(2)如圖②,在矩形ABCD中,AB=3,BC=4,點(diǎn)P在矩形的內(nèi)部,∠BPC=135°,求AP長的最小值.問題拓展:(3)如圖③,在四邊形ABCD中,連接對(duì)角線AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,則對(duì)角線BD是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.2.(問題發(fā)現(xiàn))(1)如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(探究證明)(2)如圖2,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一直線時(shí),BD與CE具有怎樣的位置關(guān)系,并說明理由;(拓展延伸)(3)如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,將△ACD繞順時(shí)針旋轉(zhuǎn),點(diǎn)C對(duì)應(yīng)點(diǎn)E,設(shè)旋轉(zhuǎn)角∠CAE為α(0°<α<360°),當(dāng)點(diǎn)C,D,E在同一直線時(shí),畫出圖形,并求出線段BE的長度.3.某數(shù)學(xué)課外活動(dòng)小組在學(xué)習(xí)了勾股定理之后,針對(duì)圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積之間的關(guān)系問題”進(jìn)行了以下探究:類比探究:(1)如圖2,在中,為斜邊,分別以為直徑,向外側(cè)作半圓,則面積之間的關(guān)系式為_____________;推廣驗(yàn)證:(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作,,滿足,則(1)中所得關(guān)系式是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由;拓展應(yīng)用:(3)如圖4,在五邊形中,,點(diǎn)在上,,求五邊形的面積.4.(1)問題發(fā)現(xiàn)如圖1,△ABC與△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直線BD,CE交于點(diǎn)F,直線BD,AC交于點(diǎn)G.則線段BD和CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)類比探究如圖2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直線BD,CE交于點(diǎn)F,AC與BD相交于點(diǎn)G.若AB=kAC,試判斷線段BD和CE的數(shù)量關(guān)系以及直線BD和CE相交所成的較小角的度數(shù),并說明理由;(3)拓展延伸如圖3,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(3.0),點(diǎn)N為y軸上一動(dòng)點(diǎn),連接MN.將線段MN繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90得到線段MP,連接NP,OP.請(qǐng)直接寫出線段OP長度的最小值及此時(shí)點(diǎn)N的坐標(biāo).5.問題探究:(1)如圖①,已知在△ABC中,BC=4,∠BAC=45°,則AB的最大值是.(2)如圖②,已知在Rt△ABC中,∠ABC=90°,AB=BC,D為△ABC內(nèi)一點(diǎn),且AD=2,BD=2.,CD=6,請(qǐng)求出∠ADB的度數(shù).問題解決:(3)如圖③,某戶外拓展基地計(jì)劃在一處空地上修建一個(gè)新的拓展游戲區(qū)△ABC,且AB=AC.∠BAC=120°,點(diǎn)A、B、C分別是三個(gè)任務(wù)點(diǎn),點(diǎn)P是△ABC內(nèi)一個(gè)打卡點(diǎn).按照設(shè)計(jì)要求,CP=30米,打卡點(diǎn)P對(duì)任務(wù)點(diǎn)A、B的張角為120°,即∠APB=120°.為保證游戲效果,需要A、P的距離與B、P的距離和盡可能大,試求出AP+BP的最大值.6.如圖,已知和均為等腰三角形,,,將這兩個(gè)三角形放置在一起.(1)問題發(fā)現(xiàn):如圖①,當(dāng)時(shí),點(diǎn)B、D、E在同一直線上,連接CE,則線段BD、CE之間的數(shù)量關(guān)系是_________,_________;(2)拓展探究:如圖②,當(dāng)時(shí),點(diǎn)B、D、E不在同一直線上,連接CE,求出線段BD、CE之間的數(shù)量關(guān)系及BD、CE所在直線相交所成的銳角的大?。ǘ加煤氖阶颖硎荆?,并說明理由:(3)解決問題:如圖③,,,,連接CE、BD,在繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)CE所在的直線垂直于AD時(shí),請(qǐng)你直接寫出BD的長.7.在矩形ABCD中,(k為常數(shù)),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn)(不與B,D重合),將射線PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°與射線CB交于點(diǎn)E,連接AE.(1)特例發(fā)現(xiàn):如圖1,當(dāng)k=1時(shí),將點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,可發(fā)現(xiàn)點(diǎn)E與點(diǎn)B重合,則=,∠AEP=;當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),∠AEP的大?。ㄌ睢案淖儭被颉安蛔儭保?;(2)類比探究:如圖2,若k≠1時(shí),當(dāng)k的值確定時(shí),請(qǐng)?zhí)骄俊螦EP的大小是否會(huì)隨著點(diǎn)P的移動(dòng)而發(fā)生變化,并說明理由;(3)拓展應(yīng)用:當(dāng)k≠1時(shí),如圖2,連接PC,若PC⊥BD,,PC=2,求AP的長.8.(閱讀理解)定義:如果四邊形的某條對(duì)角線平分一組對(duì)角,那么把這條對(duì)角線叫“協(xié)和線”,該四邊形叫做“協(xié)和四邊形”.(深入探究)(1)如圖1,在四邊形中,,,請(qǐng)說明:四邊形是“協(xié)和四邊形”.(嘗試應(yīng)用)(2)如圖2,四邊形是“協(xié)和四邊形”,為“協(xié)和線”,,,若點(diǎn)、分別為邊、的中點(diǎn),連接,,.求:①與的面積的比;②的正弦值.(拓展應(yīng)用)(3)如圖3,在菱形中,,,點(diǎn)、分別在邊和上,點(diǎn)、分別在邊和上,點(diǎn)為與的交點(diǎn),點(diǎn)在上,連接,若四邊形,都是“協(xié)和四邊形”,“協(xié)和線”分別是、,求的最小值.9.如圖1,在中,,點(diǎn)P在斜邊上,點(diǎn)D?E?F分別是線段??的中點(diǎn),易知是直角三角形.現(xiàn)把以點(diǎn)P為中心,順時(shí)針旋轉(zhuǎn),其中.連接??.(1)操作發(fā)現(xiàn)如圖2,若點(diǎn)P是的中點(diǎn),連接,可以發(fā)現(xiàn)____________;(2)類比探究如圖3,中,于點(diǎn)P,請(qǐng)判斷與的大小,結(jié)合圖2說明理由;(3)拓展提高在(2)的條件下,如果,且,在旋轉(zhuǎn)的過程中,當(dāng)以點(diǎn)C?D?F?P四點(diǎn)為頂點(diǎn)的四邊形與以點(diǎn)B?E?F?P四點(diǎn)為頂點(diǎn)的四邊形都是平行四邊形時(shí),直接寫出線段??的長.10.如圖1,已知和均為等腰直角三角形,點(diǎn)、分別在線段、上,.(1)觀察猜想:如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接、,的延長線交于點(diǎn).當(dāng)?shù)难娱L線恰好經(jīng)過點(diǎn)時(shí),點(diǎn)與點(diǎn)重合,此時(shí),①的值為______;②∠BEC的度數(shù)為______度;(2)類比探究:如圖3,繼續(xù)旋轉(zhuǎn),點(diǎn)與點(diǎn)不重合時(shí),上述結(jié)論是否仍然成立,請(qǐng)說明理由;(3)拓展延伸:若.,當(dāng)所在的直線垂直于時(shí),請(qǐng)你直接寫出線段的長.11.如圖1,已知直角三角形,,,點(diǎn)是邊上一點(diǎn),過作于點(diǎn),連接,點(diǎn)是中點(diǎn),連接,.(1)發(fā)現(xiàn)問題:線段,之間的數(shù)量關(guān)系為______;的度數(shù)為______;(2)拓展與探究:若將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)角,如圖2所示,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;(3)拓展與運(yùn)用:如圖3所示,若繞點(diǎn)旋轉(zhuǎn)的過程中,當(dāng)點(diǎn)落到邊上時(shí),邊上另有一點(diǎn),,,連接,請(qǐng)直接寫出的長度.12.如圖(1),在矩形ABCD中,AD=nAB,點(diǎn)M,P分別在邊AB,AD上(均不與端點(diǎn)重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.(問題發(fā)現(xiàn))(1)如圖(2),當(dāng)n=1時(shí),BM與PD的數(shù)量關(guān)系為,CN與PD的數(shù)量關(guān)系為.(類比探究)(2)如圖(3),當(dāng)n=2時(shí),矩形AMNP繞點(diǎn)A順時(shí)針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)就圖(3)給出證明;若變化,請(qǐng)寫出數(shù)量關(guān)系,并就圖(3)說明理由.(拓展延伸)(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點(diǎn)共線時(shí),請(qǐng)直接寫出線段CN的長13.(問題探究)課堂上老師提出了這樣的問題:“如圖①,在中,,點(diǎn)是邊上的一點(diǎn),,求的長”.某同學(xué)做了如下的思考:如圖②,過點(diǎn)作,交的延長線于點(diǎn),進(jìn)而求解,請(qǐng)回答下列問題:(1)___________度;(2)求的長.(拓展應(yīng)用)如圖③,在四邊形中,,對(duì)角線相交于點(diǎn),且,,則的長為_____________.14.問題提出(1)如圖(1),在等邊三角形ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN=°.類比探究(2)如圖(2),在等邊三角形ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.拓展延伸(3)如圖(3),在等腰三角形ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個(gè)條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說明理由.15.(性質(zhì)探究)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE平分∠BAC,交BC于點(diǎn)E.作DF⊥AE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時(shí),求的值.(拓展延伸)(4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時(shí),請(qǐng)直接寫出tan∠BAE的值.16.(1)問題探究:如圖1所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請(qǐng)判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請(qǐng)說明理由.(2)理解應(yīng)用:如圖2所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出AE的長;(3)拓展應(yīng)用:如圖3所示,有公共頂點(diǎn)A的兩個(gè)矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點(diǎn)M,N分別是BD,DE的中點(diǎn),連接MN,當(dāng)點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出MN的長17.(1)問題情境:如圖1,已知等腰直角中,,,是上的一點(diǎn),且,過作于,取中點(diǎn),連接,則的長為_______(請(qǐng)直接寫出答案)小明采用如下的做法:延長到,使,連接,為中點(diǎn),為的中點(diǎn),是的中位線……請(qǐng)你根據(jù)小明的思路完成上面填空;(2)遷移應(yīng)用:將圖1中的繞點(diǎn)作順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),試探究、、的數(shù)量關(guān)系,并證明你的結(jié)論.(3)拓展延伸:在旋轉(zhuǎn)的過程中,當(dāng)、、三點(diǎn)共線時(shí),直接寫出線段的長.18.如圖(1),在矩形中,,點(diǎn)分別是邊的中點(diǎn),四邊形為矩形,連接.(1)問題發(fā)現(xiàn)在圖(1)中,_________;(2)拓展探究將圖(1)中的矩形繞點(diǎn)旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,的大小有無變化?請(qǐng)僅就圖(2)的情形給出證明;(3)問題解決當(dāng)矩形旋轉(zhuǎn)至三點(diǎn)共線時(shí),請(qǐng)直接寫出線段的長.19.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.20.(1)問題提出:如圖①,在矩形中,,點(diǎn)為邊上一點(diǎn),連接,過點(diǎn)作對(duì)角線的垂線,垂足為,點(diǎn)為的中點(diǎn),連接,,.可知的形狀為______;(2)深人探究:如圖②,將在平面內(nèi)繞點(diǎn)順時(shí)針旋轉(zhuǎn),請(qǐng)判斷的形狀是否變化,并說明理由;(提示:延長到,使;延長到,使,連接,,,構(gòu)造全等三角形進(jìn)行證明)(3)拓展延伸:如果,,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn),,在同一條直線上時(shí),請(qǐng)直接寫出的長.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、中考幾何壓軸題1.(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以解析:(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則P的運(yùn)動(dòng)軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,根據(jù)給出數(shù)據(jù)求值即可;(3)以AB為斜邊向下做等腰直角三角形AEB,連接CE,根據(jù)△DAB∽△CAE,得出BD=CE,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,根據(jù)C點(diǎn)的軌跡求出CE最大值,即求出BD最大值.【詳解】解:(1)如圖①,連接AC、AF、DG、CF,在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,∴,又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,∴∠DAG=∠CAF,∴△DGA∽△CFA,∴,故答案為;(2)如圖②,以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則∠BPC作為圓周角剛好是135°,∴P的運(yùn)動(dòng)軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,作OE垂直AB延長線于點(diǎn)E,∵△BOC為等腰直角三角形,BC=4,∴OB=OC=BC=×4=2,∠OBC=45°,∴∠OBE=90°-∠OBC=90°-45°=45°,又∵OE⊥AE,∴△BEO為等腰直角三角形,∴BE=OE=OB=×2=2,又∵AB=3,∴AE=AB+BE=3+2=5,∴,∵OP=OB=2,∴AP=AO-OP=-2,即AP的最小值為-2;(3)存在,如圖3,以AB為斜邊向下做等腰直角三角形AEB,連接CE,則∠EAB=45°,,∵AC=AD,∠ACD=90°,∴DAC=45°,,∴,∠DAB=∠CAE=45°,∴△DAB∽△CAE,∴,∴BD=CE,∴當(dāng)CE最大時(shí),BD取最大值,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,∵∠AOB=90°,∠ACB=45°,∴點(diǎn)C在優(yōu)弧AB上,由圖知當(dāng)C在OE延長線C'位置時(shí)C'E有最大值,此時(shí)C'E=OE+OC',∵AB=6,△AOB和△AEB都是以AB為斜邊的等腰直角三角形,∴四邊形AOBE為正方形,∴OE=AB=6,OC'=OA=AB=3,∴CE的最大值為6+3,∵BD=CE,∴BD的最大值為×(6+3)=6+6.【點(diǎn)睛】本題主要考查了圖形的變換,三角形相似,等腰直角三角形,正方形,圓周角,圓心角等知識(shí)點(diǎn),熟練掌握并靈活運(yùn)用這些知識(shí)點(diǎn)是解題的關(guān)鍵.2.(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三解析:(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三角形全等的性質(zhì)可求解;(2)連接BD,由題意易得∠BAD=∠CAE,進(jìn)而可證△BAD≌△CAE,最后根據(jù)三角形全等的性質(zhì)及角的等量關(guān)系可求證;(3)如圖,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,然后根據(jù)相似三角形的性質(zhì)及題意易證△BAE∽△CAD,最后根據(jù)勾股定理及等積法進(jìn)行求解即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案為:BD=CE,BD⊥CE;(2)BD⊥CE,理由:如圖2,連接BD,∵在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∵AC=AB,AE=AD,∴△CEA≌△BDA(SAS),∴∠BDA=∠AEC=45°,∴∠BDE=∠ADB+∠ADE=90°,∴BD⊥CE;(3)如圖3,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,∴,即,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠ABE=∠ACD,∵∠BEC=180°﹣(∠CBE+∠BCE)=180°﹣(∠CBA+∠ABE+∠BCE)=180°﹣(∠CBA+∠ACD+∠BCE)=90°,∴BE⊥CE,在Rt△BCD中,BC=2CD=4,∴BD=,∵AC⊥BD,∴S△BCD=AC?BD=BC?AC,∴AC=AE=,AD=,∴AF=,CE=2CF=2×,∴BE=.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定及相似三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)題意得到三角形的全等,然后利用全等三角形的性質(zhì)得到相似三角形,進(jìn)而求解.3.(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)解析:(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)先添加輔助線,在第二問的思路下,先證明三個(gè)三角形相似,得出三個(gè)三角形的面積關(guān)系,再利用30°、45°的直角三角形計(jì)算出相應(yīng)的邊,計(jì)算出五邊形的面積即可.【詳解】解:(1)設(shè)AB=b,AC=a,BC=c.則有:所以在Rt△ABC中,有a2+b2=c2,且故答案為:S1+S2=S3(2)∵∴設(shè)AB、AC、BC邊上的高分別為h1,h2,h3∴,設(shè)AB=b,AC=a,BC=c則∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)連接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,則AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=則PD=1+∴=所以五邊形的面積為:【點(diǎn)睛】本題考查勾股定理、與勾股定理有關(guān)的圖形問題、相似三角形.是中考的??贾R(shí).4.(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE解析:(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE,結(jié)合∠AGB=∠FGC,即可得到結(jié)論;(2)先證明ABCADE,從而得,結(jié)合∠BAD=∠CAE,可得BADCAE,進(jìn)而即可得到結(jié)論;(3)把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,(3,3),,進(jìn)而即可求解.【詳解】解:(1)BD=CE,BD⊥CE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC?∠DAC,∠CAE=∠DAE?∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AGB=∠FGC,∴∠CFG=∠BAG=90°,即BD⊥CE,故答案是:BD=CE,BD⊥CE;(2)∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴ABCADE,∴,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∴BADCAE,∴∠ABD=∠ACE,又∵∠AGB=∠FGC,∴∠BFC=∠BAC=180°-∠ABC-∠ACB=180°-α-β,∴AB=kAC,直線BD和CE相交所成的較小角的度數(shù)為:180°-α-β;(3)由題意得:MN=MP,∠NMP=90°,把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,∵點(diǎn)M的坐標(biāo)為(3,0),∴(3,3)∵OPM,∴,即線段OP長度最小時(shí),的長度最小,∴當(dāng)⊥y軸時(shí),的長度最小,此時(shí)(0,3),∴N(0,3),OP的最小值為3.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),通過旋轉(zhuǎn)變換,構(gòu)造相似三角形或全等三角形,是解題的關(guān)鍵.5.(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT解析:(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT,連接DT,利用勾股定理的逆定理證明∠CTD=90°,可得結(jié)論;(3)將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ,證明PA+PB=JC,再求出JC的最大值即可求解.【詳解】(1)如圖①,作△ABC的外接圓,連接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=2=OA∵AB≤OA+OB∴AB≤4∴AB的最大值為4故答案為:4;(2)如圖②,將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT,連接DT由題意可得DT=BD=2,CT=AD=2∵CD=6∴∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如圖③,將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等邊三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=∵CJ≤OJ+OC∴CJ≤∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值為米.【點(diǎn)睛】此題主要考查旋轉(zhuǎn)的綜合運(yùn)用,解題的關(guān)鍵是熟知三角形外接圓的性質(zhì)、三角函數(shù)的應(yīng)用、旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用及三角形的三邊關(guān)系的應(yīng)用.6.(1),60;(2),;(3)或【分析】(1)證明,得出,,即可得出結(jié)論;(2)證明,即可得出結(jié)論;(3)先判斷出,再求出,①當(dāng)點(diǎn)在點(diǎn)上方時(shí),先判斷出四邊形是矩形,求出,再根據(jù)勾股定理求出,解析:(1),60;(2),;(3)或【分析】(1)證明,得出,,即可得出結(jié)論;(2)證明,即可得出結(jié)論;(3)先判斷出,再求出,①當(dāng)點(diǎn)在點(diǎn)上方時(shí),先判斷出四邊形是矩形,求出,再根據(jù)勾股定理求出,,得出;②當(dāng)點(diǎn)在點(diǎn)下方時(shí),同①的方法得,,,進(jìn)而得出,即可得出結(jié)論.【詳解】解:(1)如圖①中,在為等腰三角形,,,是等邊三角形,,,同理:,,,,,,,點(diǎn)、、在同一直線上,,,,故答案為:,60.(2)如圖②中,,、所在直線相交所成的銳角的大小為.理由:延長交的延長線于,設(shè)交于點(diǎn).在等腰三角形中,,,,同理,,,,,,,,,,.、所在直線相交所成的銳角的大小為.(3)由(2)知,,,在中,,,①當(dāng)點(diǎn)在點(diǎn)上方時(shí),如圖③,過點(diǎn)作交的延長線于,當(dāng)時(shí),可證,,,,四邊形是矩形,,矩形是正方形,,在中,根據(jù)勾股定理得,,.②當(dāng)點(diǎn)在點(diǎn)下方時(shí),如圖④同①的方法得,,,,綜上所述,的長為或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等邊三角形的性質(zhì),判斷出△ACE∽△ABD是解本題的關(guān)鍵.7.(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分解析:(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM≌△PEN,可得∠AEP的大小不變;(2)類似(1),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM∽△PEN,可得∠AEP的大小不變;(3)利用(2)的結(jié)論,證BE=EC.再證△ABE∽△BCD,利用比例式求出k,再利用三角函數(shù)求出AP的長.【詳解】解:(1)如圖,∵k=1,∴在矩形ABCD是正方形,∵點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,∴PA=PE,∠AEP=45°,故,如圖,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四邊形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不變;故答案為:1,45°,不變;(2)∠AEP的大小不變.理由如下:過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四邊形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k為定值,∴∠AEP的大小不變.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.在Rt△BPC中,tan∠PCB==tan∠AEP=k=,∴PB=PC=,由勾股定理得,∴PE=BC=,∴PA=PE=.【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定,正方形的判定與性質(zhì),相似三角形判定與性質(zhì),解直角三角形,解題關(guān)鍵是恰當(dāng)作輔助線,構(gòu)建全等三角形或相似三角形,利用解直角三角形的知識(shí)求解.8.(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的解析:(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的判定定理可得,從而可得,再根據(jù)等邊三角形的判定與性質(zhì)可得,然后設(shè),解直角三角形可得,從而可得,最后利用三角形的面積公式即可得;②如圖(見解析),設(shè),先利用勾股定理可得,再利用三角形的面積公式可得,然后根據(jù)正弦三角函數(shù)的定義即可得;(3)如圖(見解析),先解直角三角形可得,再根據(jù)菱形的性質(zhì)、平行線的性質(zhì)可得,從而可得,然后根據(jù)垂線段最短可得當(dāng)時(shí),取得最小值,最后根據(jù)相似三角形的判定與性質(zhì)即可得.【詳解】證明:(1)如圖,連接,在和中,,,,平分和,四邊形是“協(xié)和四邊形”;(2)①如圖,設(shè)與相交于點(diǎn),為“協(xié)和線”,平分和,,在和中,,,,∵點(diǎn)、分別為邊、的中點(diǎn),,,是等邊三角形,,(等腰三角形的三線合一),設(shè),則,∵在中,,,在中,,,,即與的面積的比為;②如圖,過點(diǎn)作于點(diǎn),由(2)①知,垂直平分,,設(shè),則,同(2)①可得:,,,,解得,則在中,;(3)如圖,過點(diǎn)作,交延長線于點(diǎn),,,在中,,四邊形是菱形,,,同(2)①可證:垂直平分,,,,由垂線段最短可知,當(dāng)時(shí),取得最小值,在和中,,,,即,解得,即的最小值為.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)、解直角三角形、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí)點(diǎn),較難的是題(3),利用垂線段最短得出當(dāng)時(shí),取得最小值是解題關(guān)鍵.9.(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.解析:(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.(3)分兩種情形:如圖中,當(dāng)時(shí),滿足條件,如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,分別求解即可.【詳解】解:(1)如圖2中,連接,.,,,,,,,,,,,同法可證,,,.故答案為1,1.(2)結(jié)論:.理由:如圖3中,連接.,,,,,,,,,同法可證,,,,,,,.(3)如圖中,當(dāng)時(shí),,,,,,四邊形是平行四邊形,,,,,,同法可證,,四邊形是平行四邊形,,,,,,,,,,,,,,由(2)可知,,,.如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,此時(shí),由(2)可知,,,.綜上所述,,,.【點(diǎn)睛】本題屬于四邊形綜合題,考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考?jí)狠S題.10.(1)①;②45;(2)成立,理由見解析;(3)或【分析】(1)①如圖,設(shè)AC交BE于點(diǎn)O.證明△DAB∽△EAC,推出=,∠ABD=∠ACE,②再證明∠BAO=∠CEO=45°,可得結(jié)論.(解析:(1)①;②45;(2)成立,理由見解析;(3)或【分析】(1)①如圖,設(shè)AC交BE于點(diǎn)O.證明△DAB∽△EAC,推出=,∠ABD=∠ACE,②再證明∠BAO=∠CEO=45°,可得結(jié)論.(2)如圖(3)中,設(shè)AC交BF于點(diǎn)O.證明△DAB∽△EAC,可得結(jié)論.(3)分兩種情形:如圖,當(dāng)CE⊥AD于O時(shí),如圖(4)-2中,當(dāng)EC⊥AD時(shí),延長CE交AD于O.分別求出EC,可得結(jié)論.【詳解】解:(1)如圖(2)中,設(shè)AC交BE于點(diǎn)O.∵△AED,△ABC都是等腰直角三角形,∴∠EAD=∠CAB=45°,AD=AE,AB=AC,∴∠EAC=∠DAB,∴=,∴△DAB∽△EAC,∴=;②由△DAB∽△EAC,∴∠ABD=∠ACE,∵∠AOB=∠EOC,∴∠BAO=∠CEO=45°,∴∠CEB=45°,故答案為:,45;(2)如圖(3)中,設(shè)AC交BF于點(diǎn)O.∵△AED,△ABC都是等腰直角三角形,∴∠EAD=∠CAB=45°,AD=AE,AB=AC,∴∠EAC=∠DAB,=,∴△DAB∽△EAC,∴=,∠ABD=∠ACE,∵∠AOB=∠FOC,∴∠BAO=∠CFO=45°,∴=,∠BFC=45°;(3)如圖(4)-1中,當(dāng)CE⊥AD于O時(shí),∵AE=DE=,AC=BC=,∠AED=∠ACB=90°,∴AD=AE=2,∵EO⊥AD,∴OD=OA=OE=1,∴OC==3,∴EC=OE+OC=4,∵BD=EC,∴BD=4;如圖(4)-2中,當(dāng)EC⊥AD時(shí),延長CE交AD于O.同法可得OD=OA=OE=1,OC=3,EC=3-1=2,∴BD=EC=2,綜上所述,BD的長為4或2.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考?jí)狠S題.11.(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)解析:(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理可得,再根據(jù)等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形的外角性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)平行線的性質(zhì)、等邊三角形的判定與性質(zhì)、角的和差即可求出的度數(shù);(3)如圖(見解析),先根據(jù)直角三角形的性質(zhì)可得,從而可得,再分別在和中,根據(jù)直角三角形的性質(zhì)、勾股定理可得,從而可得,然后在中,利用勾股定理即可得.【詳解】(1)在中,,點(diǎn)是中點(diǎn),,同理可得:,,在中,,,,又,,,,,,,;(2)結(jié)論成立,理由如下:如圖,分別取AB的中點(diǎn)為M,取AD的中點(diǎn)為N,連接FM、CM、EN、FN,,,又點(diǎn)是中點(diǎn),是的中位線,,,同理可得:,,繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)角,,,,,,,,,同理可得:,,在和中,,,,,是等邊三角形,,,,,,,;(3)如圖,過點(diǎn)G作,交AE延長線于點(diǎn)F,在中,,,,,由旋轉(zhuǎn)的性質(zhì)得:,在中,,,在中,,,,則在中,.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、三角形中位線定理、三角形全等的判定定理與性質(zhì)、旋轉(zhuǎn)的性質(zhì)等知識(shí)點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.12.(1)BM=PD;(2)見解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(解析:(1)BM=PD;(2)見解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(2)連接AC,證明,即可求解;(3)分兩種情況考慮:通過證得出對(duì)應(yīng)邊數(shù)量關(guān)系,設(shè),則解直角三角形AQM,從而計(jì)算出QM的長度,從而求算CN.【詳解】(1)解:∵當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形∴AM=AP,AB=AD∴BM=PD又∵∴∴(2)CN與PD之間的數(shù)量關(guān)系發(fā)生變化,.理由:連接AC,如圖:在矩形ABCD和矩形AMNP中,∵.AD=2AB,AP=2AM,∴,∴.易得∴△ANC∽△APD∴∴(3)分兩種情況考慮:①如圖:∵已知AD=4,AP=2,∴AB=2,AM=PN=1由圖知:∴設(shè),則,在直角三角形AQM中:解得:(舍)∴,∴∴②如圖:由①可得:,,MN=2∴【點(diǎn)睛】本題考查矩形與旋轉(zhuǎn)、相似等綜合,有一定的難度,轉(zhuǎn)化相關(guān)的線段與角度是解題關(guān)鍵.13.【問題探究】(1);(2).【拓展應(yīng)用】.【分析】問題探究:(1)由平行線的性質(zhì)得出∠ACE+∠BAC=180°,即可得出結(jié)果;(2)由平行線的性質(zhì)得出∠E=∠BAD=72°,證出AC=AE解析:【問題探究】(1);(2).【拓展應(yīng)用】.【分析】問題探究:(1)由平行線的性質(zhì)得出∠ACE+∠BAC=180°,即可得出結(jié)果;(2)由平行線的性質(zhì)得出∠E=∠BAD=72°,證出AC=AE,由平行線證明△ABD∽△ECD,求出AD=2;ED=4,ED=2,得出AC=AE=AD+ED=6;

拓展應(yīng)用:過點(diǎn)D作DF∥AB交AC于點(diǎn)F.證明△BAE∽△DFE,得出=2,得出AB=2DF,EF=AE=1,AF=AE+EF=3,證出AC=AD,在Rt△ADF中,求出DF=AF×tan∠CAD=,得出AC=AD=2DF=2,AB=2DF=2,得出AC=AB,在Rt△ABC中,求出BC=AB=2即可.【詳解】解:(1)∵CE∥AB,∴∠ACE+∠BAC=180°,

∴∠ACE=180°-108°=72°;

故答案為:72;

(2)∵CE∥AB,

∴∠E=∠BAD=72°,

∴∠E=∠ACE,

∴AC=AE,

∵CE∥AB,

∴△ABD∽△ECD,

∴,∵BD=2CD,

∴=2,∴AD=2ED=4,

∴ED=2,

∴AC=AE=AD+ED=4+2=6;拓展應(yīng)用:

:如圖3中,過點(diǎn)D作DF∥AB交AC于點(diǎn)F.

∵AC⊥AB,∴∠BAC=90°,∵DF∥AB,

∴∠DFA=∠BAC=90°,

∵∠AEB=∠DEF,

∴△BAE∽△DFE,

∴=2,∴AB=2DF,EF=AE=1,AF=AE+EF=3,∵∠BAD=120°,

∴∠CAD=30°,

∴∠ACD=75°=∠ADC,

∴AC=AD,

在Rt△ADF中,∵∠CAD=30°,

∴DF=AF×tan∠CAD=3×,∴AC=AD=2DF=2,AB=2DF=2,∴AC=AB,

在Rt△ABC中,∵∠BAC=90°,

∴BC=AB=2;故答案為:2.【點(diǎn)睛】此題考查四邊形綜合題,相似三角形的判定與性質(zhì),直角三角形的性質(zhì),等腰三角形的判定,勾股定理,本題綜合性強(qiáng),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題.14.(1)60;(2)見解析;(3)見解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;解析:(1)60;(2)見解析;(3)見解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;(2)也可以通過證明≌,得出結(jié)論,和(1)的思路完全一樣;(3)當(dāng)∠ABC=∠AMN時(shí),∽,利用相似的性質(zhì)得到,又根據(jù)∠BAM=∠CAN,證得∽,即可得到答案.【詳解】(1)證明:∵、是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在和中,,∴≌(SAS),∴∠ABC=∠ACN;∵是等邊三角形∴∠ABC=60°∴∠ACN=∠ABC=60°.(2)結(jié)論∠ACN=60°仍成立.理由如下:∵、都是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴≌,∴∠ACN=∠ABM=60°.(3)添加條件:∠ABC=∠AMN.理由如下:∵BA=BC,MA=MN,∠ABC=∠AMN,∴∠BAC=∠MAN,∴∽,∴.又∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴∽,∴∠ABC=∠ACN.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),以及全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細(xì)觀察圖形,找到全等的條件,利用全等的性質(zhì)證明結(jié)論.15.(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG解析:(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.(3)如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.(4)設(shè)OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時(shí),點(diǎn)G在OA上.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時(shí),點(diǎn)G在線段OC上,連接EF.分別求解即可解決問題.【詳解】(1)解:如圖1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)證明:如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四邊形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=?OG?DK,S2=?BF?AD,又∵BF=2OG,,∴,設(shè)CD=2x,AC=3x,則AD=,∴.(4)解:設(shè)OG=a,AG=k.①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時(shí),點(diǎn)G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時(shí),點(diǎn)G在線段OC上,連接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,綜上所述,tan∠BAE的值為或.【點(diǎn)睛】本題是一道綜合題,主要涉及到等腰三角形的判定及其性質(zhì)、全等三角形的判定和性質(zhì)、三角形中位線定理、相似三角形的判定及其性質(zhì)、勾股定理的應(yīng)用等知識(shí)點(diǎn),解題的關(guān)鍵是綜合運(yùn)用所學(xué)到的相關(guān)知識(shí).16.(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由解析:(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE=15°,可得∠DEB=90°,由直角三角形的性質(zhì)可求解;(3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.【詳解】解:(1)BE=DG,BE⊥DG,理由如下:如圖1:延長BE交AD于N,交DG于H,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD,∠GAE=∠DAB=90°,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE,∵∠ABE+∠ANB=90°,∴∠ADG+∠DNH=90°,∴∠DHN=90°,∴BE⊥DG;(2)如圖,當(dāng)點(diǎn)G在線段DE上時(shí),連接BD,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD=10,∠GAE=∠DAB=90°,∠ADB=45°=∠ABD,BD=AB=10,GE=AE,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE=15°,∴∠BDE=45°﹣15°=30°,∠DBE=45°+15°=60°,∴∠DEB=90°,∴BE=BD=5=DG,DE=BE=5,∴GE=5﹣5,∴AE==5﹣5,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求AE=5﹣5,故答案為:5﹣5;(3)如圖,若點(diǎn)G在線段DE上時(shí),∵AD=4,AB=4,AG=4,AE=4,∴DB===8,GE===8,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,又∵,∴△AGD∽△AEB,∴,∠DGA=∠AEB,∴BE=DG,∵∠DGA=∠GAE+∠DEA,∠AEB=∠DEB+∠AED,∴∠GAE=∠DEB=90°,∵DB2=DE2+BE2,∴64×13=(DG+8)2+3DG2,∴DG=12或DG=﹣16(舍去),∴BE=12,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=6;如圖,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求:BE=16,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=8,綜上所述:MN為6或8,故答案為:6或8.【點(diǎn)睛】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定和性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.17.(1);(2)或;(3)或【分析】(1)延長到,使,連接,過作于,在中,利用勾股定理求得EH的長,再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長與的延長線交于一點(diǎn),利用解析:(1);(2)或;(3)或【分析】(1)延長到,使,連接,過作于,在中,利用勾股定理求得EH的長,再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長與的延長線交于一點(diǎn),利用等腰直角三角形的性質(zhì)結(jié)合三角形中位線定理即可求解;(3)分點(diǎn)D在線段AC上和在AC延長線上兩種情況討論,仿照(1)的方法即可求解.【詳解】(1)延長到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,∴,過作于,∵,,∴四邊形BDEG是矩形,∵等腰直角三角形,,∴∠C=∠A=45,∵,∴等腰直角三角形,∵,∴,∴,∵在中,,∴;(2)當(dāng)時(shí),分成兩種情況:如圖在上方,延長與的延長線交于一點(diǎn),∵∠BAC=45,∴是等腰直角三角形,且B為AH的中點(diǎn),∴,∴,∵點(diǎn)F是AE中點(diǎn),∴,∴;如圖,在下方,延長與的延長線交于一點(diǎn),同理是等腰直角三角形,為中點(diǎn),∴,∴,∵點(diǎn)F是AE中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論