版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、將一張長方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點B、D折疊后的對應點分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°2、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對3、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.54、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形5、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.2、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.3、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).4、如圖,在矩形ABCD中,AD=3AB,點G,H分別在AD,BC上,連BG,DH,且,當=_______時,四邊形BHDG為菱形.5、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)三、解答題(5小題,每小題10分,共計50分)1、如圖,在平行四邊形中,,..點在上由點向點出發(fā),速度為每秒;點在邊上,同時由點向點運動,速度為每秒.當點運動到點時,點,同時停止運動.連接,設運動時間為秒.(1)當為何值時,四邊形為平行四邊形?(2)設四邊形的面積為,求與之間的函數(shù)關系式.(3)當為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.2、如圖,將□ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.3、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點E與點C重合且B、C、G三點共線.此時△BFC可以看作是△AGC經過平移、軸對稱或旋轉得到.請直接寫出得到△BFC的過程.遷移應用:如圖2,點E為AC邊上一點(不與點A,C重合),點F為△ABC中線CD上一點,延長GF交BC于點H,求證:.聯(lián)系拓展:如圖3,AB=12,點D,E分別為AB、AC的中點,M為線段BD上靠近點B的三等分點,點F在射線DC上運動(E、F、G三點按順時針排列).當最小時,則△MDG的面積為_______.4、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.5、如圖,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分線l,交AB于點D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.-參考答案-一、單選題1、A【解析】【分析】可以設∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設∠EAD′=α,∠FAB′=β,根據(jù)折疊性質可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點睛】本題通過折疊變換考查學生的邏輯思維能力,解決此類問題,應結合題意,最好實際操作圖形的折疊,易于找到圖形間的關系.2、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關鍵在于能夠熟練掌握三角形中位線定理.3、B【解析】【分析】利用折疊的性質可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據(jù)矩形性質可得AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質,∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關鍵.4、D【解析】【分析】根據(jù)矩形的判定,正方形的性質,菱形和平行四邊形的判定對各選項分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點睛】本題主要考查特殊平行四邊形的判定與性質,熟練掌握特殊平行四邊形相關的判定與性質是解答本題的關鍵.5、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,此時根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點D作DH⊥AB交AB于點H,再利用直角三角形的性質和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,∴N與B重合時DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質,利用中位線求得EF=DN是解題的關鍵.二、填空題1、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想,掌握正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想是解題關鍵.2、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關鍵.3、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關鍵.4、【解析】【分析】設則再利用矩形的性質建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設AD=3AB,設則矩形ABCD,解得:故答案為:【點睛】本題考查的是勾股定理的應用,矩形的性質,菱形的性質,利用圖形的性質建立方程確定之間的關系是解本題的關鍵.5、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內角和定理化簡可得:;由圖2中四邊形內角和定理化簡可得:;結合圖形即可發(fā)現(xiàn)規(guī)律,求得結果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應代數(shù)式,正方形性質等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關鍵.三、解答題1、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當t=4或
或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;
(2)先構造直角三角形,求出AE,再用梯形的面積公式即可得出結論;
(3)利用面積關系求出t,即可求出DQ,進而判斷出DQ=PQ,即可得出結論;
(4)分三種情況,利用等腰三角形的性質,兩腰相等建立方程求解即可得出結論.【詳解】解:(1)∵在平行四邊形中,,,由運動知,AQ=16?t,BP=2t,
∵四邊形ABPQ為平行四邊形,
∴AQ=BP,
∴16?t=2t
∴t=,
即:t=s時,四邊形ABPQ是平行四邊形;(2)過點A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由運動知,BP=2t,DQ=t,
∵四邊形ABCD是平行四邊形,
∴AD=BC=16,
∴AQ=16?t,
∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,
∵BC=16,
∴S四邊形ABCD=16×4=64,
由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),
∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三
∴2t+32=×64,
∴t=8;
如圖,當t=8時,點P和點C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;(4)①當AB=BP時,BP=8,
即2t=8,t=4;
②當AP=BP時,如圖,∵∠B=30°,
過P作PM垂直于AB,垂足為點M,
∴BM=4,,解得:BP=,
∴2t=,
∴t=
③當AB=AP時,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,當t=4或或時,△ABP為等腰三角形.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的性質,含30°的直角三角形的性質,等腰三角形的性質,解(1)的關鍵是利用AQ=BP建立方程,解(2)的關鍵是求出梯形的高,解(3)的關鍵是求出t,解(4)的關鍵是分類討論的思想思考問題.2、(1)證明見解析;(2)證明見解析;【分析】(1)根據(jù)平行四邊形的性質得到,AB=CD,然后根據(jù)CE=DC,得到AB=EC,,利用“一組對邊平行且相等的四邊形是平行四邊形”判斷即可;(2)由(1)得的結論得四邊形ABEC是平行四邊形,再通過角的關系得出FA=FE=FB=FC,AE=BC,可得結論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四邊形ABEC是平行四邊形;(2)∵由(1)知,四邊形ABEC是平行四邊形,∴FA=FE,F(xiàn)B=FC.∵四邊形ABCD是平行四邊形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四邊形ABEC是矩形.【點睛】本題考查的是平行四邊形的判定與性質及矩形的判定,關鍵是先由平行四邊形的性質證三角形全等,然后推出平行四邊形,再通過角的關系證矩形.3、(1)以點C為旋轉中心將逆時針旋轉就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點K,如圖,先證明,然后證明,得到,則,過點F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點G在的角平分線所在直線上運動.過G作,則,最小即是最小,故當M、G、P三點共線時,最?。蝗鐖D3-2所示,過點G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點C逆時針旋轉60度所得;(2)法一:證明:以為邊作,與的延長線交于點K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點,∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點G在的角平分線所在直線上運動.過G作,則,∴最小即是最小,∴當M、G、P三點共線時,最小如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,∴AM=2AP,∵D是AB的中點,AB=12,∴AD=BD=6,∵M是BD靠近B點的三等分點,∴MD=4,∴AM=10,∴AP=5,又∵∠PAG=30°,∴AG=2GP,∵,∴∴∴.【點睛】本題主要考查了全等三角形的性質與判定,等邊三角形的性質
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)施工規(guī)范手冊
- 2026年未來人工智能發(fā)展趨勢及應用測試題
- 消防技術培訓課件
- 建筑工程施工質量管理手冊(標準版)
- 消防工程師銷售培訓課件
- 2025年企業(yè)信息化安全防護與合規(guī)性檢查手冊
- 汽車維修行業(yè)質量管理體系建設指南(標準版)
- 2026年生物化學原理與實驗技術計算題庫
- 2026版市場營銷策略與案例分析模擬題
- 消防安全檢查與管理手冊
- 2025年11月15日江西省市直遴選筆試真題及解析(B卷)
- 小學生科普小知識:靜電
- 重慶市康德2025屆高三上學期第一次診斷檢測-數(shù)學試卷(含答案)
- 導樂用具使用課件
- “師生機”協(xié)同育人模式的實踐探索與效果評估
- 公路施工組織設計附表
- DBJT15-186-2020 高強混凝土強度回彈法檢測技術規(guī)程
- 風電場庫管理辦法
- 金屬樓梯維修方案(3篇)
- 春季學期期末教職工大會校長講話:那些“看不見”的努力終將照亮教育的方向
- 順產產后兩小時護理查房
評論
0/150
提交評論