考點解析滬科版9年級下冊期末測試卷【學生專用】附答案詳解_第1頁
考點解析滬科版9年級下冊期末測試卷【學生專用】附答案詳解_第2頁
考點解析滬科版9年級下冊期末測試卷【學生專用】附答案詳解_第3頁
考點解析滬科版9年級下冊期末測試卷【學生專用】附答案詳解_第4頁
考點解析滬科版9年級下冊期末測試卷【學生專用】附答案詳解_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°2、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.3、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.4、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③5、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.6、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.87、同時拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.8、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.2、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.3、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機抽取一張,將卡片上的數(shù)字記為,則點在第四象限的概率為__________.4、如圖,在等腰直角中,已知,將繞點逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.5、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.6、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)7、平面直角坐標系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當BK取最小值時,點B的坐標為_________.三、解答題(7小題,每小題0分,共計0分)1、在平面內(nèi),給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于r(r為常數(shù)),到點O的距離等于r的所有點組成圖形G,ABC的平分線交圖形G于點D,連接AD,CD.求證:AD=CD.2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.3、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機從三個崗位中選取一個報名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.4、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.5、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.6、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標上字母P.7、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學、外語三個學科為必選科目;“1”為首選科目,即:物理、歷史這2個學科中任選1科,且必須選1科;“2”為再選科目,即:化學、生物、思想政治、地理這4個學科中任選2科,且必須選2科.小紅在高一上期期末結束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學科的概率.-參考答案-一、單選題1、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.2、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應用這些知識點是解題關鍵.3、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.4、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結合的思想是解答本題的關鍵.5、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、A【分析】過點作于點,連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關鍵.7、A【分析】首先利用列舉法可得所有等可能的結果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.8、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關鍵是判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題1、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關鍵.2、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關鍵是作出相應輔助線.3、【分析】第四象限點的特征是,所以當橫坐標只能為2或3,縱坐標只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點的坐標特征是,∴滿足條件的點分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結果,∴點在第四象限的概率為.故答案為:【點睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點是解題關鍵.4、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關鍵在于做輔助線構造直角三角形.5、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經(jīng)檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關鍵.6、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.7、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標,從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應用,垂線段最短等知識,解題的關鍵是正確尋找點B的運動軌跡,學會利用垂線段最短解決最短問題.三、解答題1、見解析【分析】由題意畫圖,再根據(jù)圓周角定理的推論即可得證結論.【詳解】證明:根據(jù)題意作圖如下:∵BD是圓周角ABC的角平分線,∴∠ABD=∠CBD,∴,∴AD=CD.【點睛】本題考查了角,弧,弦之間的關系,熟練掌握三者的關系定理是解題的關鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關知識點是解題的關鍵.3、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根據(jù)題意畫出樹狀圖,得到共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,再利用概率公式,即可求解【詳解】解:東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為.(2)根據(jù)題意畫圖如下:共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,則他們恰好都選擇同一類崗位的概率是【點睛】本題主要考查了利用畫樹狀圖法或列表法求概率,熟練掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù);P(必然事件)=1;P(不可能事件)=0是解題的關鍵.4、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結果,其中兩人抽到同一景點的結果有4種,進而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結果,其中兩人抽到動物園和森林公園的結果有2種,進而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點的結果有4種,所以兩人抽到同一景點的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動物園和森林公園的結果有2種,所以兩人抽到動物園和森林公園的概率為.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.5、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論