基礎強化滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第1頁
基礎強化滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第2頁
基礎強化滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第3頁
基礎強化滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第4頁
基礎強化滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,正五邊形ABCDE內接于⊙O,則∠CBD的度數是()A.30° B.36° C.60° D.72°2、如圖,在中,,,將繞點A順時針旋轉60°得到,此時點B的對應點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.43、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.4、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結論錯誤的是()A. B.四邊形EFGH是菱形C. D.5、如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,則∠APB的度數是().A.90° B.100° C.120° D.150°6、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.8、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.5第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.2、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.3、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.4、如圖,在中,,是內的一個動點,滿足.若,,則長的最小值為_______.5、如圖,一次函數的圖象與x軸交于點A,與y軸交于點B,作的外接圓,則圖中陰影部分的面積為______.(結果保留π)6、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.7、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計0分)1、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.2、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?3、隨著課后服務的全面展開,某校組織了豐富多彩的社團活動.炯炯和露露分別打算從以下四個社團:A.快樂足球,B.數學歷史,C.文學欣賞,D.棋藝鑒賞中,選擇一個社團參加.(1)炯炯選擇數學歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團的概率.4、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應的扇形圓心角度數為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數;(3)已知調查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.5、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.6、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結果;(2)求取出的兩個小球標號和等于5的概率.7、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結BE,OC.(1)求證:.(2)求證:BE是的切線.-參考答案-一、單選題1、B【分析】求出正五邊形的一個內角的度數,再根據等腰三角形的性質和三角形的內角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內角度數是解決問題的關鍵.2、B【分析】由題意以及旋轉的性質可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉的性質知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質,等邊三角形的三邊都相等,三個內角都相等,并且每一個內角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內角都相等的三角形是等邊三角形;有一個內角是60度的等腰三角形是等邊三角形;兩個內角為60度的三角形是等邊三角形.3、B【分析】根據“把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關鍵.4、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據切線長定理得到AG=AH,∠GAF=∠HAF,進而求出∠GAF=∠HAF=∠DAE=30°,據此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質,等邊三角形的判定和性質,翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關鍵.5、D【分析】將繞點逆時針旋轉得,根據旋轉的性質得,,,則為等邊三角形,得到,,在中,,,,根據勾股定理的逆定理可得到為直角三角形,且,即可得到的度數.【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.6、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關鍵是掌握軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.7、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關鍵在于用扇形表示陰影面積.8、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據等邊三角形的性質求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質.此題比較簡單,注意掌握數形結合思想的應用.二、填空題1、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關鍵是作出相應輔助線.2、【分析】根據題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設點,根據切線的性質及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質及勾股定理的應用,理解題意,作出相應圖形求出解析式是解題關鍵.3、2【分析】根據扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.4、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.5、【分析】先求出A、B、C坐標,再證明三角形BOC是等邊三角形,最后根據扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數的圖象與x軸交于點A,與y軸交于點B,∴當時,,B點坐標為(0,1)當時,,A點坐標為∴∵作的外接圓,∴線段AB中點C的坐標為,∴三角形BOC是等邊三角形∴∵C的坐標為∴∴故答案為:【點睛】本題主要考查了一次函數的綜合運用,求扇形面積.用已知點的坐標表示相應的線段是解題的關鍵.6、2【分析】連接OC,利用半徑相等以及三角形的外角性質求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質.熟練掌握垂徑定理是解題的關鍵.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.三、解答題1、【分析】根據題意列出樹狀圖,根據概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數與總情況數之比.2、小宇獲勝的概率是,見解析.【分析】根據題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機會均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點睛】本題考查用列表法或畫樹狀圖表示概率,是基礎考點,掌握相關知識是解題關鍵.3、(1)(2)炯炯和露露選擇同一個社團的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結果,其中炯炯和露露選同一個社團的有4種結果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.數學歷史,C.文學欣賞,D.棋藝鑒賞四個社團,數學歷史是其中一個社團,∴炯炯選擇數學歷史的概率為,故答案為:;(2)畫樹狀圖如下:共有16種等可能的結果,其中炯炯和露露選同一個社團的有4種結果,∴P(炯炯和露露選擇同一個社團)=【點睛】此題考查了用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數與總情況數之比.4、(1)100,126°,條形統(tǒng)計圖見解析;(2)700;(3)【分析】(1)根據C等級的人數和所占比可求出抽取的總人數,用A等級的人數除以抽取的總人數乘以360°可得A等級對應扇形圓心角的度數,用抽取的總人數乘以B等級所占的百分比得B等級的人數,用抽取的總人數減去A、B、C等級的人數得出D等級人數,即可補全條形統(tǒng)計圖;(2)用2000乘以A等級所占的百分比即可估計出成績“優(yōu)秀”的學生人數;(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回訪到一男一女的概率.【詳解】(1)C等級的人數和所占比可得抽取的總人數為:(名),∴“優(yōu)秀”等級對應的扇形圓心角度數為:,B等級的人數為:(名),D等級的人數為:(名),∴補全條形統(tǒng)計圖如下所示:(2)(名),∴該校競賽成績“優(yōu)秀”的學生人數為700名;(3)∵抽取不及格的人數有5名,其中有2名女生,∴有3名男生,設3名男生分別為,,,2名女生分別為,,列表格如下所示:∴總的結果有20種,一男一女的有12種,∴回訪到一男一女的概率為.【點睛】本題考查統(tǒng)計與概率,其中涉及到條形統(tǒng)計圖與扇形統(tǒng)計圖相關聯問題,用樣本估計總體以及用列舉法求概率,讀懂條形統(tǒng)計圖和扇形統(tǒng)計圖所給出的條件是解題的關鍵.5、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質解得,再根據內錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設圓的半徑為R,點F是劣弧AD的中點,OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點睛】本題考查圓的綜合題,涉及切線的判定與性質、平行四邊形的性質、等邊三角形的判定與性質、相似三角形的判定與性質、扇形面積等知識,綜合性較強,有難度,掌握相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論