版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
小學(xué)數(shù)學(xué)基本公式大全匯編小學(xué)數(shù)學(xué)公式是數(shù)學(xué)學(xué)習(xí)的“工具包”,它將抽象的數(shù)量關(guān)系、圖形規(guī)律轉(zhuǎn)化為簡潔的表達(dá)式,幫助孩子快速理解知識(shí)、解決問題。這份匯編從數(shù)與代數(shù)、圖形與幾何、統(tǒng)計(jì)與概率、單位換算四大模塊梳理核心公式,結(jié)合實(shí)例解析,兼顧嚴(yán)謹(jǐn)性與實(shí)用性,助力夯實(shí)數(shù)學(xué)基礎(chǔ)。一、數(shù)與代數(shù)模塊:從運(yùn)算到關(guān)系的規(guī)律總結(jié)1.整數(shù)、小數(shù)與分?jǐn)?shù)的運(yùn)算公式(1)加減法運(yùn)算基本規(guī)則:相同數(shù)位對齊(小數(shù)需對齊小數(shù)點(diǎn)),從低位算起。運(yùn)算律:加法交換律:\(a+b=b+a\)(如\(3+5=5+3\))加法結(jié)合律:\((a+b)+c=a+(b+c)\)(如\((2+3)+5=2+(3+5)\))減法性質(zhì):\(a-b-c=a-(b+c)\)(如\(10-3-2=10-(3+2)\))(2)乘除法運(yùn)算基本規(guī)則:從低位算起(小數(shù)乘法先按整數(shù)算,再點(diǎn)小數(shù)點(diǎn);除法需對齊數(shù)位)。運(yùn)算律:乘法交換律:\(a\timesb=b\timesa\)(如\(4\times5=5\times4\))乘法結(jié)合律:\((a\timesb)\timesc=a\times(b\timesc)\)(如\((2\times5)\times3=2\times(5\times3)\))乘法分配律:\((a+b)\timesc=a\timesc+b\timesc\)(如\((3+5)\times2=3\times2+5\times2\))除法性質(zhì):\(a\divb\divc=a\div(b\timesc)\)(\(b、c\neq0\),如\(24\div3\div2=24\div(3\times2)\))(3)分?jǐn)?shù)運(yùn)算加減法:同分母:\(\frac{a}\pm\frac{c}=\frac{a\pmc}\)(\(b\neq0\),如\(\frac{2}{5}+\frac{1}{5}=\frac{3}{5}\))異分母:先通分(找最小公倍數(shù)),再按同分母計(jì)算,即\(\frac{a}\pm\frac{c}ecjkkph=\frac{ad\pmbc}{bd}\)(\(b、d\neq0\),如\(\frac{1}{2}+\frac{1}{3}=\frac{3+2}{6}=\frac{5}{6}\))乘除法:乘法:\(\frac{a}\times\frac{c}seuhmcl=\frac{ac}{bd}\)(\(b、d\neq0\),如\(\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}\))除法:\(\frac{a}\div\frac{c}rvamukw=\frac{a}\times\fracbvpqcwv{c}=\frac{ad}{bc}\)(\(b、c、d\neq0\),如\(\frac{2}{3}\div\frac{4}{5}=\frac{2}{3}\times\frac{5}{4}=\frac{10}{12}=\frac{5}{6}\))2.方程與等式的基本規(guī)律等式性質(zhì):等式兩邊同時(shí)加、減、乘(或除以非零數(shù)),等式仍成立。例如:若\(2x+5=15\),兩邊減5得\(2x=10\),再除以2得\(x=5\)。方程定義:含有未知數(shù)的等式(如\(3x-4=8\)、\(2(x+1)=6\)),求解核心是“消元”(利用等式性質(zhì)逐步簡化)。3.比與比例的核心公式比的定義:兩個(gè)數(shù)相除叫比,形式為\(a:b=a\divb\)(\(b\neq0\)),比值是商(如\(6:3=2\))。比的基本性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘或除以非零數(shù),比值不變(如\(4:2=(4\times2):(2\times2)=8:4=2\))。比例定義:表示兩個(gè)比相等的式子(如\(2:4=3:6\)),內(nèi)項(xiàng)積等于外項(xiàng)積(\(a:b=c:d\impliesad=bc\),\(b、d\neq0\))。正反比例:正比例:\(\frac{y}{x}=k\)(\(k\)一定),如“速度一定時(shí),路程與時(shí)間成正比例”。反比例:\(xy=k\)(\(k\)一定),如“路程一定時(shí),速度與時(shí)間成反比例”。二、圖形與幾何模塊:從平面到立體的度量規(guī)律1.平面圖形的周長與面積(1)三角形分類:按角(銳角、直角、鈍角),按邊(等腰、等邊)。面積公式:\(S=\frac{1}{2}ah\)(\(a\)為底,\(h\)為對應(yīng)高,如底5cm、高4cm的三角形,面積\(\frac{1}{2}\times5\times4=10\,\text{cm}^2\))。內(nèi)角和:三角形內(nèi)角和為\(180^\circ\);\(n\)邊形內(nèi)角和為\((n-2)\times180^\circ\)(如四邊形內(nèi)角和\((4-2)\times180^\circ=360^\circ\))。(2)四邊形長方形:周長:\(C=2(a+b)\)(\(a\)長,\(b\)寬,如長3cm、寬2cm,周長\(2\times(3+2)=10\,\text{cm}\))。面積:\(S=ab\)(如長3cm、寬2cm,面積\(3\times2=6\,\text{cm}^2\))。正方形:周長:\(C=4a\)(\(a\)為邊長,如邊長5cm,周長\(4\times5=20\,\text{cm}\))。面積:\(S=a^2\)(如邊長5cm,面積\(5^2=25\,\text{cm}^2\))。平行四邊形:面積\(S=ah\)(\(a\)底,\(h\)高,如底6cm、高4cm,面積\(6\times4=24\,\text{cm}^2\))。梯形:面積\(S=\frac{(a+b)h}{2}\)(\(a\)上底,\(b\)下底,\(h\)高,如上底3cm、下底5cm、高4cm,面積\(\frac{(3+5)\times4}{2}=16\,\text{cm}^2\))。(3)圓與圓環(huán)圓的基本關(guān)系:直徑\(d=2r\)(\(r\)為半徑)。圓的周長:\(C=\pid=2\pir\)(\(\pi\approx3.14\),如半徑2cm,周長\(2\times3.14\times2=12.56\,\text{cm}\))。圓的面積:\(S=\pir^2\)(如半徑2cm,面積\(3.14\times2^2=12.56\,\text{cm}^2\))。圓環(huán)面積:\(S=\pi(R^2-r^2)\)(\(R\)外半徑,\(r\)內(nèi)半徑,如外半徑3cm、內(nèi)半徑2cm,面積\(3.14\times(3^2-2^2)=15.7\,\text{cm}^2\))。2.立體圖形的棱長、表面積與體積(1)長方體與正方體長方體:棱長和:\(4(a+b+h)\)(\(a\)長,\(b\)寬,\(h\)高,如長3cm、寬2cm、高1cm,棱長和\(4\times(3+2+1)=24\,\text{cm}\))。表面積:\(S=2(ab+ah+bh)\)(如長3cm、寬2cm、高1cm,表面積\(2\times(3\times2+3\times1+2\times1)=22\,\text{cm}^2\))。體積:\(V=abh=Sh\)(\(S\)底面積,如長3cm、寬2cm、高1cm,體積\(3\times2\times1=6\,\text{cm}^3\))。正方體:棱長和:\(12a\)(\(a\)為棱長,如棱長2cm,棱長和\(12\times2=24\,\text{cm}\))。表面積:\(S=6a^2\)(如棱長2cm,表面積\(6\times2^2=24\,\text{cm}^2\))。體積:\(V=a^3\)(如棱長2cm,體積\(2^3=8\,\text{cm}^3\))。(2)圓柱與圓錐圓柱:側(cè)面積:\(S_{\text{側(cè)}}=Ch=2\pirh\)(\(C\)底面周長,\(h\)高,如半徑1cm、高5cm,側(cè)面積\(2\times3.14\times1\times5=31.4\,\text{cm}^2\))。表面積:\(S_{\text{表}}=S_{\text{側(cè)}}+2S_{\text{底}}=2\pirh+2\pir^2\)(如半徑1cm、高5cm,表面積\(31.4+2\times3.14\times1^2=37.68\,\text{cm}^2\))。體積:\(V=Sh=\pir^2h\)(如半徑1cm、高5cm,體積\(3.14\times1^2\times5=15.7\,\text{cm}^3\))。圓錐:體積\(V=\frac{1}{3}Sh=\frac{1}{3}\pir^2h\)(\(S\)底面積,\(h\)高,如半徑1cm、高3cm,體積\(\frac{1}{3}\times3.14\times1^2\times3=3.14\,\text{cm}^3\))。三、統(tǒng)計(jì)與概率模塊:數(shù)據(jù)的分析與規(guī)律1.統(tǒng)計(jì)量的計(jì)算平均數(shù):\(\text{平均數(shù)}=\frac{\text{總數(shù)量}}{\text{總份數(shù)}}\)(如數(shù)據(jù)3、5、7,平均數(shù)\(\frac{3+5+7}{3}=5\))。中位數(shù):將數(shù)據(jù)排序后,中間的數(shù)(若數(shù)據(jù)個(gè)數(shù)為偶數(shù),取中間兩數(shù)的平均數(shù))。如數(shù)據(jù)1、2、4、5,中位數(shù)\(\frac{2+4}{2}=3\)。眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)(如數(shù)據(jù)2、2、3、4,眾數(shù)為2)。2.統(tǒng)計(jì)圖的特點(diǎn)條形統(tǒng)計(jì)圖:直觀展示數(shù)量多少,便于比較不同類別。折線統(tǒng)計(jì)圖:展示數(shù)量變化趨勢,便于分析增減規(guī)律。扇形統(tǒng)計(jì)圖:展示各部分占總體的百分比,便于理解比例關(guān)系(各部分百分比和為100%)。四、單位換算模塊:量的度量與轉(zhuǎn)換1.長度單位(從大到?。┣祝╧m)、米(m)、分米(dm)、厘米(cm)、毫米(mm)進(jìn)率:\(1\,\text{km}=1000\,\text{m}\);\(1\,\text{m}=10\,\text{dm}=100\,\text{cm}=1000\,\text{mm}\);\(1\,\text{dm}=10\,\text{cm}\);\(1\,\text{cm}=10\,\text{mm}\)。2.面積單位(從大到小)平方千米(km2)、公頃、平方米(m2)、平方分米(dm2)、平方厘米(cm2)進(jìn)率:\(1\,\text{km}^2=100\,\text{公頃}\);\(1\,\text{公頃}=____\,\text{m}^2\);\(1\,\text{m}^2=100\,\text{dm}^2=____\,\text{cm}^2\);\(1\,\text{dm}^2=100\,\text{cm}^2\)。3.體積(容積)單位(從大到?。┝⒎矫祝╩3)、立方分米(dm3,升L)、立方厘米(cm3,毫升mL)進(jìn)率:\(1\,\text{m}^3=1000\,\text{dm}^3=1000\,\text{L}\);\(1\,\text{dm}^3=1\,\text{L}=1000\,\text{cm}^3=1000\,\text{mL}\);\(1\,\text{cm}^3=1\,\text{mL}\)。4.重量單位(從大到?。﹪崳╰)、千克(kg)、克(g)進(jìn)率:\(1\,\text{t}=1000\,\text{kg}\);\(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年圖書國際貿(mào)易代理服務(wù)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 未來五年新形勢下動(dòng)物源性植介入醫(yī)療行業(yè)順勢崛起戰(zhàn)略制定與實(shí)施分析研究報(bào)告
- 未來五年微電影企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 安全員A證考試模擬題庫及完整答案詳解(必刷)
- 未來五年醫(yī)用軟填料行業(yè)市場營銷創(chuàng)新戰(zhàn)略制定與實(shí)施分析研究報(bào)告
- 未來五年理發(fā)、美容服務(wù)企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報(bào)告
- 安全員A證考試綜合提升測試卷帶答案詳解(黃金題型)
- 安全員A證考試綜合練習(xí)附參考答案詳解【模擬題】
- 安全員A證考試綜合檢測模擬卷及完整答案詳解【典優(yōu)】
- GJB3206B-2022技術(shù)狀態(tài)管理
- 2025珠海市鋼鐵交易所鋼材貨物交割合同范本
- (高清版)DB62∕T 5097-2025 羅布麻栽培技術(shù)規(guī)程
- 2025血管內(nèi)導(dǎo)管相關(guān)性血流感染預(yù)防與診治指南
- 品牌設(shè)計(jì)師年終總結(jié)
- 煤礦智能化發(fā)展藍(lán)皮書
- 居住證明合同協(xié)議
- 2024-2025閩教版小學(xué)英語五年級上冊期末考試測試卷及參考答案(共3套)
- 臨床協(xié)調(diào)員CRC年度總結(jié)
- 編鐘樂器市場洞察報(bào)告
- 負(fù)壓沖洗式口腔護(hù)理
評論
0/150
提交評論