版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學重點初中真題(比較難)答案一、解答題1.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.2.(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;①若∠B=90°則∠F=;②若∠B=a,求∠F的度數(shù)(用a表示);(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.3.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.4.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為:.5.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設.(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側時,其他條件不變,請猜想和的數(shù)量關系,并說明理由;(3)當點運動到點的右側時,其他條件不變,和還滿足(2)中的數(shù)量關系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)6.已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是______;②當∠BAD=∠ABD時,x=______;當∠BAD=∠BDA時,x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.7.如圖1,在△ABC中,∠B=90°,分別作其內(nèi)角∠ACB與外角∠DAC的平分線,且兩條角平分線所在的直線交于點E.(1)∠E=°;(2)分別作∠EAB與∠ECB的平分線,且兩條角平分線交于點F.①依題意在圖1中補全圖形;②求∠AFC的度數(shù);(3)在(2)的條件下,射線FM在∠AFC的內(nèi)部且∠AFM=∠AFC,設EC與AB的交點為H,射線HN在∠AHC的內(nèi)部且∠AHN=∠AHC,射線HN與FM交于點P,若∠FAH,∠FPH和∠FCH滿足的數(shù)量關系為∠FCH=m∠FAH+n∠FPH,請直接寫出m,n的值.8.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).9.[原題](1)已知直線,點P為平行線AB,CD之間的一點,如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當點P在直線AB的上方時.若,和的平分線相交于點,與的平分線相交于點,與的平分線相交于點……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長線和的補角的平分線相交于點E,試猜想與的數(shù)量關系,并說明理由.10.(想一想)在三角形的三條重要線段(高、中線、角平分線)中,能把三角形面積平分的是三角形的______;(比一比)如圖,已知,點、在直線上,點、在直線上,連接、、、,與相交于點,則的面積_______的面積;(填“>”“<”或“=”)(用一用)如圖所示,學校種植園有一塊四邊形試驗田STPQ.現(xiàn)準備過點修一條筆直的小路(小路面積忽略不計),將試驗田分成面積相等的兩部分,安排“拾穗班”、“鋤禾班”兩班種植蔬菜,進行勞動實踐,王老師提醒同學們先把四邊形轉化為同面積的三角形,再把三角形的面積二等分即可.請你在下圖中畫出小路,并保留作圖痕跡.【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設∠AOB=x,根據(jù)兩直線平行,內(nèi)錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點睛】本題主要考查了平行線、角平分線的性質以及三角形內(nèi)角和定理,熟記各性質并準確識圖理清圖中各角度之間的關系是解題的關鍵.2.(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根據(jù)∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根據(jù)角平分線的定義以及三角形內(nèi)角和定理,即可得到∠H=90°+∠ABG,進而得到∠F+∠H=90°+∠CBG=180°.【詳解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案為45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;(2)由(1)可得,∠F=∠ABC,∵∠AGB與∠GAB的角平分線交于點H,∴∠AGH=∠AGB,∠GAH=∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,∴∠F+∠H的值不變,是定值180°.【點睛】本題主要考查了三角形內(nèi)角和定理、三角形外角性質的綜合運用,熟練運用定理是解題的關鍵.3.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質,結合三角形的內(nèi)角和定理可得到角之間的關系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質,結合三角形的內(nèi)角和定理可得到角之間的關系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點O是∠AB故答案為:110°;C與∠ACB的角平分線的交點,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應用,注意:三角形的內(nèi)角和等于180°.4.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進而得出即可;(2)利用(1)中所求的結論得出∠α、∠1、∠2之間的關系即可;(3)利用三角外角的性質,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補角的性質可得出∠α、∠1、∠2之間的關系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點睛:本題考查了三角形內(nèi)角和定理和外角的性質、對頂角相等的性質,熟練掌握三角形外角的性質是解決問題的關鍵.5.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質,從圖形中得出相關角度之間的關系是解題的關鍵.6.(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)解析:(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當∠BAD=∠ABD時,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當∠BAD=∠BDA時,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當x=18、36、54時,△ADB中有兩個相等的角.【點睛】本題考查了三角形的內(nèi)角和定理和三角形的外角性質的應用,三角形的內(nèi)角和等于180°,三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和.利用角平分線的性質求出∠ABO的度數(shù)是關鍵,注意分類討論思想的運用.7.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設∠CAF=x,∠ACE=y,根據(jù)已知可推導得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設∠CAF=x,∠ACE=y,根據(jù)已知可推導得出x﹣y=45,再根據(jù)三角形外角的性質即可求得答案;(2)①根據(jù)角平分線的尺規(guī)作圖的方法作出圖形即可;②如圖2,由CF平分∠ECB可得∠ECF=y,再根據(jù)∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推導得出45°+=∠F+y,由此即可求得答案;(3)如圖3,設∠FAH=α,根據(jù)AF平分∠EAB可得∠FAH=∠EAF=α,根據(jù)已知可推導得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根據(jù)∠FCH=m∠FAH+n∠FPH,即可求得答案.【詳解】(1)如圖1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,設∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案為45;(2)①如圖2所示,②如圖2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如圖3,設∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.【點睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質、基本作圖——角平分線等,熟練掌握三角形內(nèi)角和定理以及三角形外角的性質、結合圖形進行求解是關鍵.8.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據(jù)平分,推導出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據(jù)平分,推導出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情況進行討論,即當與,充分利用平行線的性質、角平分線的性質、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據(jù)題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質、角平分線、三角形內(nèi)角和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建廈門市集美區(qū)寧寶幼兒園非在編廚房人員招聘1人備考核心試題附答案解析
- 2025湖北咸寧市婦幼保健院人才引進7人考試重點題庫及答案解析
- 2025固原經(jīng)濟開發(fā)區(qū)招聘化工園區(qū)專職人員2人考試核心題庫及答案解析
- 2025年宿州煤電(集團)有限公司招聘71名考試核心題庫及答案解析
- 2025廣東財經(jīng)大學第二次招聘合同制人員(司機崗位)1人考試重點試題及答案解析
- 2025廣西南寧市青秀區(qū)融媒體中心招聘2人考試核心試題及答案解析
- 2026年杭州市臨安區(qū)衛(wèi)健系統(tǒng)招聘高層次、緊缺專業(yè)技術人才7人考試重點題庫及答案解析
- 武勝縣嘉陵水利集團有限公司公開招聘3名工作人員備考核心題庫及答案解析
- 2025山東德州臨邑縣人民醫(yī)院招聘備案制工作人員15人考試重點試題及答案解析
- 2025中建交通建設(雄安)有限公司招聘考試核心題庫及答案解析
- 老年人失智癥護理與照護
- 2025重慶市勘規(guī)數(shù)智科技有限公司招聘3人考試題庫必考題
- 2025貴州錦麟化工有限責任公司第三次招聘7人參考筆試題庫及答案解析
- 學堂在線 雨課堂 學堂云 R語言數(shù)據(jù)分析 期末測試答案
- 個人與團隊管理-008-國開機考復習資料
- 萬華2023年大修球罐內(nèi)外腳手架方案11.30
- GB/T 31326-2014植物飲料
- 招銀大學培訓發(fā)展的探索與實踐
- 加油站火災事故應急專項預案
- 輕松帶你學習ANP法SD軟件
- DB3401∕T 244-2022 肢體(腦癱)殘疾兒童康復服務規(guī)范
評論
0/150
提交評論