版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:52、已知,則為(
)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能3、中,厘米,,厘米,點D為AB的中點如果點P在線段BC上以v厘米秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動若點Q的運動速度為3厘米秒,則當(dāng)與全等時,v的值為A. B.3 C.或3 D.1或54、如圖①,已知,用尺規(guī)作它的角平分線.如圖②,步驟如下:第一步:以B為圓心,以a為半徑畫弧,分別交射線,于點D,E;第二步:分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P;第三步;畫射線,射線即為所求.下列敘述不正確的是(
)A. B.作圖的原理是構(gòu)造三角形全等C.由第二步可知, D.的長5、如圖,在中,的平分線交于點D,DE//AB,交于點E,于點F,,則下列結(jié)論錯誤的是(
)A. B. C. D.6、如圖為了測量B點到河對面的目標A之間的距離,在B點同側(cè)選擇了一點C,測得∠ABC=65°,∠ACB=35°,然后在M處立了標桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測得MB的長就是A,B兩點間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA7、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(
)A. B. C.3 D.8、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④9、如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠210、如圖,C為線段AE上一動點(不與點,重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結(jié)PQ.以下結(jié)論錯誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點P從點B出發(fā),以2cm/s的速度沿BC邊向點C運動,到達點C停止,同時,點Q從點C出發(fā),以vcm/s的速度沿CD邊向點D運動,到達點D停止,規(guī)定其中一個動點停止運動時,另一個動點也隨之停止運動.當(dāng)v為______時,△ABP與△PCQ全等.2、如圖,圖中由實線圍成的圖形與①是全等形的有______.(填番號)3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.4、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.5、已知:如圖,是上一點,平分,,若,則________.(用的代數(shù)式表示)6、如圖,在四邊形中,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動,設(shè)運動時間為,當(dāng)與以,,為頂點的三角形全等時,點的運動速度為______.7、如圖,已知∠1=∠2、AD=AB,若再增加一個條件不一定能使結(jié)論成立,則這個條件是_____.8、如圖,點,,在同一直線上,,,,,若線段與線段的長度之比為,則線段與線段的長度之比為______.9、如圖是教科書中的一個片段,由畫圖我們可以得到△,判定這兩個三角形全等的依據(jù)是__.(1)畫;(2)分別以點,為圓心,線段,長為半徑畫弧,兩弧相交于點;(3)連接線段,.10、如圖,在中,、的平分線相交于點I,且,若,則的度數(shù)為______度.三、解答題(5小題,每小題6分,共計30分)1、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.2、如圖,G為BC的中點,且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求證:AD是∠BAC的平分線;(2)如果AB=8,AC=6,求AE的長.3、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點D在直線BC上.(1)如圖1,當(dāng)點D在CB延長線上時,求證:BE⊥CD;(2)如圖2,當(dāng)D點不在直線BC上時,BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME4、已知:RtABC中,∠B=90°,D是BC上一點,DF⊥BC交AC于點H,且DF=BC,F(xiàn)G⊥AC交BC于點E.求證:AB=DE.5、如圖,點E在CD上,BC與AE交于點F,AB=CB,BE=BD,∠1=∠2.(1)求證:;(2)證明:∠1=∠3.-參考答案-一、單選題1、C【解析】【分析】過點作于點,作于點,作于點,先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點作于點,作于點,作于點,是的三條角平分線,,,故選:C.【考點】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關(guān)鍵.2、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點】此題考查的是直角三角形的判定,掌握有兩個內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.3、C【解析】【分析】此題要分兩種情況:①當(dāng)BD=PC時,計算出BP的長,進而可得運動時間,然后再求v;②當(dāng)BD=CQ時,計算出BP的長,進而可得運動時間,然后再求v.【詳解】①當(dāng)BD=PC時,∵點D為AB的中點,∴BD=AB=6厘米,∵BD=PC,∴BP=9-6=3(厘米),∴CQ=BP=3厘米,∴點Q運動了3÷3=1秒∴點P在線段BC上的運動速度是3÷1=3(厘米秒),②當(dāng)BD=CQ時,∴BD=CQ=6厘米,點Q運動了6÷3=2秒.∵△BDP≌△CQP,∴BP=CP=厘米,∴點P在線段BC上的運動速度是÷2=2.25(厘米秒),故選C.【考點】此題主要考查了全等三角形的性質(zhì),全等三角形的對應(yīng)邊相等,對應(yīng)角相等,關(guān)鍵是要分情況討論,不要漏解.4、D【解析】【分析】根據(jù)用尺規(guī)作圖法畫已知角的角平分線的基本步驟判斷即可【詳解】解:A、∵以a為半徑畫弧,∴,故正確B、根據(jù)作圖步驟可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正確C、∵分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P,∴,故正確D、分別以D,E為圓心,以b為半徑畫弧,其中,否則兩個圓弧沒有交點,故錯誤故選:D【考點】本題考查用尺規(guī)作圖法畫已知角的角平分線及理論依據(jù),熟練尺規(guī)作圖的基本步驟是關(guān)鍵5、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到CD=DF=3,故B正確;根據(jù)平行線的性質(zhì)及角平分線得到AE=DE=5,故C正確;由此判斷D正確;再證明△BDF≌△DEC,求出BF=CD=3,故A錯誤.【詳解】解:在中,的平分線交于點D,,∴CD=DF=3,故B正確;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正確;∴AC=AE+CE=9,故D正確;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,
∴BF=CD=3,故A錯誤;故選:A.【考點】此題考查了角平分線的性質(zhì)定理,平行線的性質(zhì),等邊對等角證明角相等,全等三角形的判定及性質(zhì),熟記各知識點并綜合應(yīng)用是解題的關(guān)鍵.6、D【解析】【分析】利用全等三角形的判定方法進行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.7、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.8、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點P,∴點P到AB、AC的距離相等,點P到AB、BC的距離相等,∴點P到BC、AC的距離相等,∴點P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.9、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因為∠ABD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.10、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.二、填空題1、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計算出t的值,進而得到v的值.【解答】解:①當(dāng)BP=CQ,AB=PC時,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當(dāng)BA=CQ,PB=PC時,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當(dāng)v=2或時,△ABP與△PQC全等,故答案為:2或.【考點】此題考查了動點問題,全等三角形的性質(zhì)的應(yīng)用,解一元一次方程,正確理解全等三角形的性質(zhì)得到相等的對應(yīng)邊求出t是解題的關(guān)鍵.2、②③【解析】【分析】根據(jù)全等圖形的定義,兩個圖形必須能夠完全重合才行.【詳解】觀察圖形,發(fā)現(xiàn)②③圖形可以和①圖形完全重合故答案為:②③.【考點】本題考查全等的概念,任何一組圖形,要想全等,則這組圖形必須能夠完全重合.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當(dāng)Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當(dāng)Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.4、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.5、【解析】【分析】過點D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長度,進而得到DF的長度,然后即可求出的值.【詳解】如圖,過點D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.6、1或【解析】【分析】設(shè)點的運動速度為,由題意可得,與以,,為頂點的三角形全等時分為兩種情況:,再利用全等三角形的性質(zhì)求解即可.【詳解】解:設(shè)點的運動速度為,由題意可得,∵∴與以,,為頂點的三角形全等時可分為兩種情況:①當(dāng)時,∴,∴∴∴此時點的運動速度為;②當(dāng)時,,∴,∴,此時點的運動速度為,故答案為:1或.【考點】本題主要考查三角形全等的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵,注意分情況討論.7、DE=BC【解析】【分析】根據(jù)題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點】本題考查了三角形全等的判定定理,熟記并靈活運用各種判定方法是解題關(guān)鍵.8、或【解析】【分析】根據(jù)平行線的性質(zhì)得到CE⊥BC,根據(jù)余角的性質(zhì)得到∠ACB=∠E,根據(jù)全等三角形的性質(zhì)得到CD=AB,BC=CE,等量代換即可得到結(jié)論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長度之比為3:5,故答案為:3:5.【考點】本題考查了平行線的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.9、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識,解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識解決問題.10、70【解析】【分析】在BC上取點D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,利用,在BC上取點D等于AC,作出輔助線是解本題的關(guān)鍵點,也是難點.三、解答題1、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.2、(1)見解析;(2)7.【解析】【分析】(1)因為G為BC的中點,且DG⊥BC,則DG是線段BC的垂直平分線,考慮連接DB、DC,利用線段的垂直平分線的性質(zhì),又因為DE⊥AB,DF⊥AC,可通過DE=DF說明AD是∠BAC的平分線;(2)先通過△AED與△ADF的全等關(guān)系,說明AE與AF的關(guān)系,利用線段的和差關(guān)系,通過線段的加減求出AE的長.【詳解】(1)連接BD、DC∵DG⊥BC,G為BC的中點,∴BD=CD,∵DG⊥BC,DE⊥AB∴∠BED=∠CFD,在Rt△DBE和Rt△DFC中,∴△DBE≌△DFC∴DE=DF,∴∠BAD=∠FAD∴AD是∠BAC的平分線;(2)∵DE=DF,∠BAD=∠FAD,AD=AD∴△AED≌△ADF,∴AE=AF∵AB=AE+BE,AC=AF-CF,∴AB+AC=AE+AF,∵AB=8,AC=6,∴8+6=2AE,∴AE=7.【考點】本題考查了全等三角形的判定與性質(zhì)、角平分線與線段垂直平分線的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及角平分線與線段垂直平分線的性質(zhì).3、(1)見解析(2)①90°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- dsp原理及應(yīng)用課程設(shè)計
- 2025湖南株洲市茶陵縣茶陵湘劇保護傳承中心公開招聘工作人員5人筆試重點試題及答案解析
- 2026連南農(nóng)商銀行校園招聘參考筆試題庫附答案解析
- 2025廣西玉林師范學(xué)院公開招聘第二批工作人員49人備考核心題庫及答案解析
- 安徽房地產(chǎn)估價課程設(shè)計
- 2025南昌農(nóng)商銀行中層管理崗位人員招聘5人考試重點試題及答案解析
- 2025年農(nóng)產(chǎn)品品牌營銷趨勢五年報告
- 《學(xué)前教育專業(yè)實踐教學(xué)體系中的兒童科學(xué)教育與探索精神培養(yǎng)研究》教學(xué)研究課題報告
- 激光切割設(shè)備五年技術(shù)升級行業(yè)報告2025年
- 2025年銅川市新區(qū)審判庭招聘法官助理、司法輔助人員(8人)考試核心題庫及答案解析
- 2025北師大版暑假八升九年級數(shù)學(xué)銜接講義 第04講 因式分解(思維導(dǎo)圖+3知識點+8考點+復(fù)習(xí)提升)(原卷)
- 全面解讀產(chǎn)后各種疼痛
- 行政單位預(yù)算管理課件
- 文化創(chuàng)意產(chǎn)品設(shè)計及案例全套教學(xué)課件
- 2025年高考歷史(北京卷)真題評析
- 奔馳GL350GL450GL550中文版說明書
- DB14-T34292025全域土地綜合整治項目可行性研究報告編制規(guī)范
- 建筑垃圾清運投標方案(技術(shù)方案)
- 公司質(zhì)量評比活動方案
- 生物實驗安全課件
- JG/T 367-2012建筑工程用切(擴)底機械錨栓及后切(擴)底鉆頭
評論
0/150
提交評論