版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、往直徑為的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為(
)A. B. C. D.2、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm3、一個商標圖案如圖中陰影部分,在長方形中,,,以點為圓心,為半徑作圓與的延長線相交于點,則商標圖案的面積是(
)A. B.C. D.4、有一個圓的半徑為5,則該圓的弦長不可能是(
)A.1 B.4 C.10 D.115、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m6、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.7、如圖,矩形中,,,,分別是,邊上的動點,,以為直徑的與交于點,.則的最大值為(
).A.48 B.45 C.42 D.408、如圖是一圓錐的側面展開圖,其弧長為,則該圓錐的全面積為A.60π B.85π C.95π D.169π9、已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°10、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(
)
A.AG平分CDB.C.點E是△ABC的內心D.點E到點A,B,C的距離相等第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,已知點C是⊙O的直徑AB上的一點,過點C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.2、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側面一周又回到點A處,則小蟲所走的最短路程為___________(結果保留根號)3、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側面積是_____.4、如圖,四邊形ABCD為⊙O的內接正四邊形,△AEF為⊙O的內接正三角形,連接DF.若DF恰好是同圓的一個內接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.5、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.6、如圖,一個底面半徑為3的圓錐,母線,D為的中點,一只螞蟻從點A出發(fā),沿著圓錐的側面爬行到D,則螞蟻爬行的最短路程為______.7、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.8、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應假設:______.9、如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為________.10、如圖,在⊙O中,是⊙O的直徑,,點是點關于的對稱點,是上的一動點,下列結論:①;②;③;④的最小值是10.上述結論中正確的個數(shù)是_________.三、解答題(5小題,每小題6分,共計30分)1、(1)課本再現(xiàn):在中,是所對的圓心角,是所對的圓周角,我們在數(shù)學課上探索兩者之間的關系時,要根據(jù)圓心O與的位置關系進行分類.圖1是其中一種情況,請你在圖2和圖3中畫出其它兩種情況的圖形,并從三種位置關系中任選一種情況證明;(2)知識應用:如圖4,若的半徑為2,分別與相切于點A,B,,求的長.2、如圖,沿一條母線將圓錐側面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑,扇形的圓心角,求該圓錐的母線長.3、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.4、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個點,==,連接AD,過點D作DE⊥AC交AC的延長線于點E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長.5、如圖,四邊形ABCD是平行四邊形,點A,B,D均在圓上.請僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.-參考答案-一、單選題1、C【解析】【分析】過點O作OD⊥AB于D,交⊙O于E,連接OA,根據(jù)垂徑定理即可求得AD的長,又由⊙O的直徑為,求得OA的長,然后根據(jù)勾股定理,即可求得OD的長,進而求得油的最大深度的長.【詳解】解:過點O作OD⊥AB于D,交⊙O于E,連接OA,由垂徑定理得:,∵⊙O的直徑為,∴,在中,由勾股定理得:,∴,∴油的最大深度為,故選:.【考點】本題主要考查了垂徑定理的知識.此題難度不大,解題的關鍵是注意輔助線的作法,構造直角三角形,利用勾股定理解決.2、A【解析】【分析】設扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點】本題主要考查扇形弧長公式.3、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進行計算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點】本題主要考查扇形的面積計算,解題的關鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.4、D【解析】【分析】根據(jù)圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質,理解圓的直徑是圓的最長的弦是解題的關鍵.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關鍵.6、C【解析】【分析】根據(jù)切線的性質,連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質和正方形的判定、性質,解題關鍵是理解和掌握切線的性質.7、A【解析】【分析】過A點作AH⊥BD于H,連接OM,如圖,先利用勾股定理計算出BD=75,則利用面積法可計算出AH=36,再證明點O在AH上時,OH最短,此時HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點O在AH上時,OH最短,∵HM=,∴此時HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱司匦蔚男再|和勾股定理.8、B【解析】【分析】設圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長公式得到=10π,解得R=12,再利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2π?r=10π,解得r=5,然后計算底面積與側面積的和.【詳解】設圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點】本題考查了切線的性質、圓周角定理、以及四邊形的內角和為360度.10、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結合題意即可求解.【詳解】解:由作法得CD平分∠ACB,
∵AG平分∠CAB,∴E點為△ABC的內心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質,熟練掌握相關基本性質是解題的關鍵.二、填空題1、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關系定理求出∠AOD=35°,根據(jù)等腰三角形的性質和三角形內角和定理計算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點】本題考查了圓心角、弧、弦的關系定理:在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等.2、6【解析】【分析】利用圓錐的底面周長等于側面展開圖的弧長可得圓錐側面展開圖的圓心角,求出側面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設圓錐的側面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側面展開圖中兩點間距離的求法;把立體幾何轉化為平面幾何來求是解決本題的突破點.3、60π【解析】【分析】利用圓錐的側面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側面積,勾股定理等知識,解題的關鍵是記住圓錐的側面積公式.4、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內接正四邊形與內接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設這個正多邊形為n邊形,∵AD,AF分別為⊙O的內接正四邊形與內接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關概念.5、5【解析】【詳解】如圖,設DC與⊙O的切點為E,∵PA、PB分別是⊙O的切線,且切點為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.6、【解析】【分析】先畫出圓錐側面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質、勾股定理可得,最后根據(jù)兩點之間線段最短即可得.【詳解】畫出圓錐側面展開圖如下:如圖,連接AB、AD,設圓錐側面展開圖的圓心角的度數(shù)為,因為圓錐側面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點D是BC的中點,,,在中,,由兩點之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點】本題考查了圓錐側面展開圖、弧長公式、等邊三角形的判定與性質等知識點,熟練掌握圓錐側面展開圖是解題關鍵.7、.【解析】【分析】先利用勾股定理求出AB=10,進而求出CD=BD=5,再求出CF=4,進而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點D是AB中點,∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點】此題主要考查了直角三角形的性質,勾股定理,切線的性質,三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關鍵.8、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點進行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設這兩條直線不平行,則兩條直線有交點,因為過直線外一點有且只有一條直線與已知直線平行因此,兩條直線有交點時,它們不可能同時與第三條直線平行因此假設與結論矛盾.故假設不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點】本題主要考查了反證法,在解題時要根據(jù)反證法的特點進行證明是本題的關鍵.9、24°【解析】【分析】根據(jù)正五邊形的內角和和正六邊形的內角和公式求得正五邊形的每個內角為108°和正六邊形的每個內角為120°,然后根據(jù)周角的定義和等腰三角形性質可得結論.【詳解】解:由題意得:正六邊形的每個內角都等于120°,正五邊形的每個內角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點】考查了正多邊形的內角與外角、等腰三角形的性質,熟練掌握正五邊形的內角和正六邊形的內角求法是解題的關鍵.10、3【解析】【分析】①根據(jù)點是點關于的對稱點可知,進而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結論;③根據(jù)等弧對等角,可知只有當和重合時,,;④作點關于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結論.【詳解】解:,點是點關于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當和重合時,,∴只有和重合時,,③錯誤;作關于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關系、最短距離的確定等,掌握圓的基本性質并靈活運用是解題關鍵.三、解答題1、(1)見解析;(2)【解析】【分析】(1)①如圖2,當點O在∠ACB的內部,作直徑,根據(jù)三角形外角的性質和等腰三角形的性質可得結論;②如圖3,當O在∠ACB的外部時,作直徑CD,同理可理結論;(2)如圖4,先根據(jù)(1)中的結論可得∠AOB=120°,由切線的性質可得∠OAP=∠OBP=90°,可得∠OPA=30°,從而得PA的長.【詳解】解:(1)①如圖2,連接CO,并延長CO交⊙O于點D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=∠AOB;如圖3,連接CO,并延長CO交⊙O于點D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD-∠BOD=2∠ACO-2∠BCO=2∠ACB,∴∠ACB=∠AOB;(2)如圖4,連接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分別與⊙O相切于點A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=∠APB=(180°-120°)=30°,∵OA=2,∴OP=2OA=4,∴PA=【考點】本題考查了切線長定理,圓周角定理等知識,掌握證明圓周角定理的方法是解本題的關鍵.2、【解析】【分析】根據(jù)側面展開圖的弧長等于底面周長列方程即可.【詳解】解:圓錐的底面周長,由題意可得,解得,所以該圓錐的母線長為.【考點】本題考查了圓錐的有關計算,解題關鍵是熟知圓錐的側面展開圖的弧長等于圓錐底面周長和圓錐母線等于圓錐側面展開圖半徑,根據(jù)題意建立方程.3、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物性職業(yè)暴露防護與健康監(jiān)護方案
- 生物制劑臨床試驗中脫落病例管理規(guī)范
- 深度解析(2026)《GBT 20014.25-2010良好農業(yè)規(guī)范 第25部分:花卉和觀賞植物控制點與符合性規(guī)范》(2026年)深度解析
- 程序員資格認證考試含答案
- 深度解析(2026)《GBT 19386.1-2003紡織機械與附件 紗線和中間產品的卷裝 第1部分術語》
- 沃爾瑪行政助理面試題及答案
- 數(shù)字市場開發(fā)專員職業(yè)資格認證考試大綱含答案
- 深度解析(2026)《GBT 19290.1-2003發(fā)展中的電子設備構體機械結構模數(shù)序列 第1部分總規(guī)范》
- 尾氣處理裝置項目可行性分析報告范文(總投資19000萬元)
- 獨居老人照護:遠程決策參與的溝通策略
- 中醫(yī)門診病歷范文30份
- 《做一個學生喜歡的老師》讀書分享
- DL∕T 5284-2019 碳纖維復合材料芯架空導線施工工藝導則(代替DLT 5284-2012)
- 03D201-4 10kV及以下變壓器室布置及變配電所常用設備構件安裝
- 牛黃解毒軟膠囊的藥代動力學研究
- 有機化學(嘉興學院)智慧樹知到期末考試答案2024年
- 注冊咨詢師各科重點 5-現(xiàn)代咨詢方法與實務
- 人員密集場所火災應急預案
- 鋼板折邊機完整版本
- 中風恢復期護理查房的課件
- 工業(yè)建筑構造(房屋建筑課件)
評論
0/150
提交評論