版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是2、如圖,點(diǎn)E是長(zhǎng)方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長(zhǎng)為()A.5 B.12 C.5 D.133、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得點(diǎn)A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm4、下列測(cè)量方案中,能確定四邊形門框?yàn)榫匦蔚氖牵ǎ〢.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量對(duì)角線是否相等 D.測(cè)量對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離是否都相等5、下列說(shuō)法中,不正確的是()A.四個(gè)角都相等的四邊形是矩形B.對(duì)角線互相平分且平分每一組對(duì)角的四邊形是菱形C.正方形的對(duì)角線所在的直線是它的對(duì)稱軸D.一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形6、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°7、如圖,的對(duì)角線交于點(diǎn)O,E是CD的中點(diǎn),若,則的值為()A.2 B.4 C.8 D.168、如圖,把矩形紙片沿對(duì)角線折疊,若重疊部分為,那么下列說(shuō)法錯(cuò)誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對(duì)稱圖形 D.折疊后和相等9、如圖,正方形ABCO和正方形DEFO的頂點(diǎn)A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.5第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_(kāi)________.2、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對(duì)角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是_____________.3、如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),若DE=4cm,則BC=_____cm.4、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.5、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為_(kāi)_________.6、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_(kāi)____.7、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)為_(kāi)__.8、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.9、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長(zhǎng)為24,則△DEF的周長(zhǎng)為_(kāi)_____.10、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長(zhǎng)為_(kāi)__________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點(diǎn)B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點(diǎn)M,點(diǎn)P是AB的中點(diǎn),連PM,求∠PMO度數(shù);(3)在(2)的條件下,點(diǎn)Q是ON的中點(diǎn),連PQ,求證:PQ⊥AM.
2、如圖,∠ACB=90°,CD⊥AB于點(diǎn)D,AF平分∠CAB交CD于點(diǎn)E,交BC于點(diǎn)F,作EG∥AB交CB于點(diǎn)G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點(diǎn),EF=1,求AB的長(zhǎng).3、如圖,平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,AD=5,求BD的長(zhǎng).4、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.5、閱讀探究小明遇到這樣一個(gè)問(wèn)題:在中,已知,,的長(zhǎng)分別為,,,求的面積.小明是這樣解決問(wèn)題的:如圖1所示,先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)(即的3個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出的面積.他把這種解決問(wèn)題的方法稱為構(gòu)圖法,(1)圖1中的面積為_(kāi)_______.實(shí)踐應(yīng)用參考小明解決問(wèn)題的方法,回答下列問(wèn)題:(2)圖2是一個(gè)的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1).①利用構(gòu)圖法在答題卡的圖2中畫(huà)出三邊長(zhǎng)分別為,,的格點(diǎn).②的面積為_(kāi)_______(寫(xiě)出計(jì)算過(guò)程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為_(kāi)_______(在圖4中構(gòu)圖并填空).-參考答案-一、單選題1、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.2、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.3、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長(zhǎng).【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點(diǎn)O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個(gè)矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點(diǎn)睛】本題主要考查菱形的判定以及勾股定理等知識(shí),解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對(duì)角線相乘的一半.4、D【解析】【分析】由平行四邊形的判定與性質(zhì)、矩形的判定分別對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、∵對(duì)角線互相平分的四邊形是平行四邊形,∴對(duì)角線互相平分且相等的四邊形才是矩形,∴選項(xiàng)A不符合題意;B、∵兩組對(duì)邊分別相等是平行四邊形,∴選項(xiàng)B不符合題意;C、∵對(duì)角線互相平分且相等的四邊形才是矩形,∴對(duì)角線相等的四邊形不是矩形,∴選項(xiàng)C不符合題意;D、∵對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離都相等,∴對(duì)角線互相平分且相等,∵對(duì)角線互相平分且相等的四邊形是矩形,∴選項(xiàng)D符合題意;故選:D.【點(diǎn)睛】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、解題的關(guān)鍵是熟記矩形的判定定理.5、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、四個(gè)角都相等的四邊形是矩形,說(shuō)法正確;B、正方形的對(duì)角線所在的直線是它的對(duì)稱軸,說(shuō)法正確;C、對(duì)角線互相平分且平分每一組對(duì)角的四邊形是菱形,說(shuō)法正確;D、一組對(duì)邊相等且平行的四邊形是平行四邊形,原說(shuō)法錯(cuò)誤;故選:D.【點(diǎn)睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.6、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長(zhǎng)方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).7、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點(diǎn)E是CD的中點(diǎn),∴S△DOE=S△COD=4,故選:B.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.8、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時(shí)可以判斷選項(xiàng)A、B、D是成立的,問(wèn)題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對(duì)稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說(shuō)法錯(cuò)誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問(wèn)題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識(shí)來(lái)分析、判斷、推理或解答.9、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長(zhǎng)線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計(jì)算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯(cuò)誤;③作DH⊥AB于H,作FG⊥CO交CO的延長(zhǎng)線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯(cuò)誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.二、填空題1、【解析】【分析】過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.2、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對(duì)角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.3、8【解析】【分析】運(yùn)用三角形的中位線的知識(shí)解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點(diǎn)∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點(diǎn)睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.4、菱形【解析】【分析】先在坐標(biāo)系中畫(huà)出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.5、##【解析】【分析】由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱的性質(zhì).6、8【解析】【分析】正方形的對(duì)角線是它的一條對(duì)稱軸,對(duì)應(yīng)點(diǎn)到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計(jì)算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問(wèn)題.7、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.8、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長(zhǎng)度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長(zhǎng)=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線定理,根據(jù)中點(diǎn)判斷出中位線,再利用中位線定理是解題的基本思路.10、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問(wèn)題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過(guò)點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.三、解答題1、(1)(1,4);(2)45°;(3)見(jiàn)解析
【分析】(1)過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點(diǎn)A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點(diǎn)B的坐標(biāo)為(1,4);(2)延長(zhǎng)MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點(diǎn)G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點(diǎn)A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點(diǎn)B的坐標(biāo)為(1,4);(2)如圖所示,延長(zhǎng)MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點(diǎn)P是AB的中點(diǎn),∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點(diǎn)G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點(diǎn),G是BM的中點(diǎn),ON=BM=1,∴,∵P是AB中點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,全等三角形的性質(zhì)與判定,三角形中位線定理,等腰直角三角形的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)【分析】(1)由余角的性質(zhì)可得∠3=∠7=∠4,可得CE=CF,可得△CEF為等腰三角形;
(2)過(guò)E作EM∥BC交AB于M,得出平行四邊形EMBG,推出BG=EM,由“AAS”可證△CAE≌△MAE,推出CE=EM,由三角形的面積關(guān)系可求GB的長(zhǎng);
(3)證明△CEF是等邊三角形,求出BC,可得結(jié)論.【詳解】(1)證明:過(guò)E作EM∥BC交AB于M,∵EG∥AB,∴四邊形EMBG是平行四邊形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)證明:過(guò)E作EM∥BC交AB于M,則四邊形EMBG是平行四邊形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等邊三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定,三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定等知識(shí)點(diǎn),主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理的能力,有一定的難度.3、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進(jìn)而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.4、(1)MN=AM+CN;(2)MN=AM+CN,理由見(jiàn)解析;(3)MN=CN-AM,理由見(jiàn)解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工方案編制工具(3篇)
- 土方施工方案摘要(3篇)
- 2025年合規(guī)知識(shí)題庫(kù)及答案
- 2025年假肢材料研究假肢裝配工程師考試練習(xí)題及答案
- 2025四川綜合評(píng)標(biāo)專家考試第二階段歷年真題及答案
- 圍墻施工組織設(shè)計(jì)方案
- 流行性感冒診療方案(2025年版)培訓(xùn)試題及答案
- 槽鋼洞施工方案(3篇)
- 2025年吉林社會(huì)工作者試題及答案
- 突起地標(biāo)施工方案(3篇)
- 眼科加速康復(fù)外科理念臨床應(yīng)用與優(yōu)化路徑
- 竹利久一次性衛(wèi)生筷項(xiàng)目投資可行性研究分析報(bào)告(2024-2030版)
- 2025秋季學(xué)期國(guó)開(kāi)電大本科《管理英語(yǔ)3》一平臺(tái)機(jī)考真題及答案總題庫(kù)珍藏版
- DB45∕T 2922.1-2024 出口沃柑檢驗(yàn)檢疫指南 第1部分:歐盟
- 種豬引種隔離管理制度
- 2.2更好發(fā)揮政府作用 2025學(xué)年高一政治示范課件(統(tǒng)編版必修2)
- 人工智能概論 課件 第1-3章 人工智能的概念、內(nèi)容和方法;人工智能的應(yīng)用與發(fā)展概況;圖搜索與問(wèn)題求解
- 醫(yī)學(xué)文獻(xiàn)綜述參考范文
- 超星爾雅學(xué)習(xí)通《化學(xué)與人類文明(浙江大學(xué))》2025章節(jié)測(cè)試附答案
- 超星爾雅學(xué)習(xí)通《鋼琴藝術(shù)賞析(吉林大學(xué)) 》2025章節(jié)測(cè)試附答案
- 意識(shí)形態(tài)的教育主題班會(huì)
評(píng)論
0/150
提交評(píng)論