版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)題測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在長(zhǎng)方形ABCD中,AB=10cm,點(diǎn)E在線段AD上,且AE=6cm,動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BC上.以vcm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)△EAP與△PBQ全等時(shí),v的值為()A.2 B.4 C.4或 D.2或2、如圖,矩形ABCD中,AC交BD于點(diǎn)O,且AB=24,BC=10,將AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點(diǎn),則四邊形OFGC的面積是()A.100 B.144 C.169 D.2253、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°4、如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE5、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形6、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°7、如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE8、如圖菱形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,若BD=8,AC=6,則AB的長(zhǎng)是()A.5 B.6 C.8 D.109、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為()A. B. C. D.10、下列說(shuō)法正確的是()A.平行四邊形的對(duì)角線互相平分且相等 B.矩形的對(duì)角線相等且互相平分C.菱形的對(duì)角線互相垂直且相等 D.正方形的對(duì)角線是正方形的對(duì)稱(chēng)軸第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,已知正方形ABCD的邊長(zhǎng)為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長(zhǎng)為_(kāi)__.2、七巧板被西方人稱(chēng)為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長(zhǎng)為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.3、如圖,在正方形ABCD中,點(diǎn)M,N為CD,BC上的點(diǎn),且DM=CN,AM與DN交于點(diǎn)P,連接AN,點(diǎn)Q為AN中點(diǎn),連接PQ,若AB=10,DM=4,則PQ的長(zhǎng)為_(kāi)_________________.4、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長(zhǎng)的最小值為_(kāi)_______.5、如圖,在?ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為_(kāi)_______________.6、如圖,平面直角坐標(biāo)系中,有,,三點(diǎn),以A,B,O三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo)為_(kāi)_____.7、如圖,在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_(kāi)____.8、一個(gè)矩形的兩條對(duì)角線所夾的銳角是60°,這個(gè)角所對(duì)的邊長(zhǎng)為10cm,則該矩形的面積為_(kāi)______.9、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長(zhǎng)為_(kāi)____.10、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E.若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),則+PB的最小值_______.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點(diǎn)O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).2、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.點(diǎn)E恰是CD的中點(diǎn).求證:(1)△ADE≌△FCE;(2)BE⊥AF.3、如圖,已知△ABC中,D是AB上一點(diǎn),AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點(diǎn),求證:BD=2EF.
4、在平面直角坐標(biāo)系中,過(guò)A(0,4)的直線a垂直于y軸,點(diǎn)M(9,4)為直線a上一點(diǎn),若點(diǎn)P從點(diǎn)M出發(fā),以每秒2cm的速度沿直線a向左移動(dòng),點(diǎn)Q從原點(diǎn)同時(shí)出發(fā),以每秒1cm的速度沿x軸向右移動(dòng),(1)幾秒后PQ平行于y軸?(2)在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,若線段OQ=2AP,求點(diǎn)P的坐標(biāo).5、在中,,斜邊,過(guò)點(diǎn)作,以AB為邊作菱形ABEF,若,求的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意可知當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP,②當(dāng)AP=BP時(shí),△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問(wèn)題的基本數(shù)量關(guān)系求解即可.【詳解】解:當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),∴點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)時(shí)間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當(dāng)AP=BP時(shí),△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點(diǎn)睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),注意數(shù)形結(jié)合和分類(lèi)討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.2、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點(diǎn),,,四邊形為平行四邊形,又繞點(diǎn)順時(shí)針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識(shí)點(diǎn),熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.3、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長(zhǎng)方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).4、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對(duì)等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對(duì)邊互相平行,等角對(duì)等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運(yùn)用三角形的中位線的性質(zhì)解決中點(diǎn)四邊形問(wèn)題是解本題的關(guān)鍵.6、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.7、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識(shí),判定四邊形BCED為平行四邊形是解題的關(guān)鍵.8、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí);熟練掌握菱形對(duì)角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.9、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過(guò)點(diǎn)D作DH⊥AB交AB于點(diǎn)H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時(shí),EF最大,∴N與B重合時(shí)DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點(diǎn)睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對(duì)角線互相平分,不一定相等,A錯(cuò)誤;矩形的對(duì)角線相等且互相平分,B正確;菱形的對(duì)角線互相垂直,不一定相等,C錯(cuò)誤;正方形的對(duì)角線所在的直線是正方形的對(duì)稱(chēng)軸,D錯(cuò)誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.二、填空題1、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),運(yùn)用了方程思想,關(guān)鍵是證明三角形全等.2、4【解析】【分析】設(shè)陰影小正方形的邊長(zhǎng)為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對(duì)角線的長(zhǎng)度是4xcm,最后求出邊長(zhǎng)a即可.【詳解】解:設(shè)陰影小正方形的邊長(zhǎng)為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長(zhǎng)為cm,則大正方形的對(duì)角線長(zhǎng)為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識(shí),熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.3、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握正方形的性質(zhì).4、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,求出CA′的最小值即可解決問(wèn)題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長(zhǎng)的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長(zhǎng)的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問(wèn)題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考填空題中的壓軸題.5、【解析】【分析】利用平行四邊形的知識(shí),將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長(zhǎng)度,即可求解;【詳解】過(guò)點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時(shí),的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.6、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點(diǎn)A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對(duì)邊平行且相等.7、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對(duì)稱(chēng)點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對(duì)稱(chēng)點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過(guò)點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)-最短路線問(wèn)題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.8、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).9、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).10、【解析】【分析】不管P點(diǎn)在l上哪個(gè)位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當(dāng)D、P、D'共線時(shí)PD+PB最短.【詳解】過(guò)點(diǎn)D作DM⊥AB交BA的延長(zhǎng)線于點(diǎn)M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點(diǎn)D與點(diǎn)D′關(guān)于直線l對(duì)稱(chēng),連接BD交直線l于點(diǎn)P,此時(shí)PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點(diǎn)睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結(jié)論;
(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進(jìn)而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關(guān)鍵.2、(1)見(jiàn)解析;(2)見(jiàn)解析.【分析】(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質(zhì)證出AB=BF,由全等三角形的性質(zhì)得出AE=FE,由等腰三角形的性質(zhì)可得出結(jié)論.【詳解】證明:(1)∵四邊形ABCD為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)家知識(shí)產(chǎn)權(quán)局專(zhuān)利局專(zhuān)利審查協(xié)作湖北中心2026年度專(zhuān)利審查員公開(kāi)招聘40人備考題庫(kù)含答案詳解
- 廈門(mén)大學(xué)附屬第一醫(yī)院漳州招商局開(kāi)發(fā)區(qū)分院2025年第四批公開(kāi)招聘編外工作人員備考題庫(kù)附答案詳解
- 咸安區(qū)2026年面向教育部直屬師范大學(xué)公費(fèi)師范畢業(yè)生專(zhuān)項(xiàng)招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2025年西安市雁塔區(qū)第一小學(xué)教師招聘考試備考題庫(kù)及答案解析
- 2025年12月云南玉溪市易門(mén)縣華億投資有限責(zé)任公司(第二次)招聘8人備考核心題庫(kù)及答案解析
- 2025年衛(wèi)生健康局招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2025年第十師北屯市公安局面向社會(huì)公開(kāi)招聘警務(wù)輔助人員備考題庫(kù)及1套完整答案詳解
- 構(gòu)建區(qū)域教育評(píng)價(jià)改革模型:人工智能評(píng)價(jià)結(jié)果應(yīng)用與效果評(píng)估教學(xué)研究課題報(bào)告
- 國(guó)家知識(shí)產(chǎn)權(quán)局專(zhuān)利局專(zhuān)利審查協(xié)作四川中心2026年度專(zhuān)利審查員公開(kāi)招聘?jìng)淇碱}庫(kù)有答案詳解
- 2025北京市海淀區(qū)海淀街道社區(qū)衛(wèi)生服務(wù)中心招聘11人一備考筆試題庫(kù)及答案解析
- 光大金甌資產(chǎn)管理有限公司筆試
- 算力產(chǎn)業(yè)園項(xiàng)目計(jì)劃書(shū)
- 【MOOC】《電子技術(shù)》(北京科技大學(xué))中國(guó)大學(xué)MOOC慕課答案
- 老年髖部骨折快速康復(fù)治療
- 【初中地理】跨學(xué)科主題學(xué)習(xí)探 索外來(lái)食料作物的傳播史課件-2024-2025學(xué)年七年級(jí)上學(xué)期(人教版2024)
- 四川省南充市2024-2025學(xué)年高一地理上學(xué)期期末考試試題含解析
- 小數(shù)乘除法豎式計(jì)算題200道及答案
- 過(guò)敏性休克課件
- 《紅樓夢(mèng)》逐章(回)詳細(xì)解讀
- 化學(xué)品管理控制程序
- 圖案-中國(guó)傳統(tǒng)圖案創(chuàng)新運(yùn)用設(shè)計(jì)智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京工業(yè)大學(xué)
評(píng)論
0/150
提交評(píng)論