版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省江山市中考數(shù)學(xué)強(qiáng)化訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(
)A.30° B.90° C.120° D.180°2、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°3、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6204、下列方程中,一定是關(guān)于x的一元二次方程的是(
)A. B.C. D.5、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.23二、多選題(5小題,每小題3分,共計15分)1、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(
)A.是劣弧的中點 B.是圓的切線C. D.2、下列語句中不正確的有(
)A.等弧對等弦 B.等弦對等弧C.相等的圓心角所對的弧相等 D.長度相等的兩條弧是等弧3、下列命題中不正確的命題有(
)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=34、二次函數(shù)y=ax2+bx+c的部分對應(yīng)值如下表:以下結(jié)論正確的是(
)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.拋物線的頂點坐標(biāo)為(1,﹣9);B.與y軸的交點坐標(biāo)為(0,﹣8);C.與x軸的交點坐標(biāo)為(﹣2,0)和(2,0);D.當(dāng)x=﹣1時,對應(yīng)的函數(shù)值y為﹣5.5、下列方程一定不是一元二次方程的是(
)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,拋物線的圖象與坐標(biāo)軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當(dāng)沿半圓從點運動至點時,點運動的路徑長是__________.2、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機(jī)從袋子中摸出一球,摸到紅球的概率為_____.3、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.4、某批青稞種子在相同條件下發(fā)芽試驗結(jié)果如下表:每次試驗粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計這批青稞發(fā)芽的概率是___________.(結(jié)果保留到0.01)5、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.四、簡答題(2小題,每小題10分,共計20分)1、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達(dá)式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O(shè),Q,R為頂點的三角形相似,請直接寫出點R的縱坐標(biāo);(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標(biāo)是﹣1.求:①tan∠DCG的值;②點C的坐標(biāo).2、在平面直角坐標(biāo)系中,拋物線的對稱軸為.求的值及拋物線與軸的交點坐標(biāo);若拋物線與軸有交點,且交點都在點,之間,求的取值范圍.五、解答題(4小題,每小題10分,共計40分)1、在數(shù)學(xué)活動課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)2、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當(dāng)直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時,請直接寫出EH的長.3、作圖題(1)由大小相同的小立方塊搭成的幾何體如下圖,請在右圖的方格中畫出該幾何體的俯視圖和左視圖.(2)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要個小立方塊,最多要個小立方塊.4、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當(dāng)點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當(dāng)點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.-參考答案-一、單選題1、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.2、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎(chǔ)上得出的,不能單純的依靠幾次決定.4、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個未知數(shù),并且含有未知數(shù)的項的次數(shù)最高為2次的整式方程是一元二次方程)逐一進(jìn)行判斷即可得.【詳解】解:A、,當(dāng)時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關(guān)鍵.5、A【分析】由題意可設(shè)盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設(shè)盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.二、多選題1、ABC【解析】【分析】直接利用圓周角定理以及結(jié)合圓心角、弧、弦的關(guān)系、切線的判定方法、平行線的判定方法、四邊形內(nèi)角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關(guān)系、四邊形內(nèi)角和、平行線的判定方法等知識,正確掌握相關(guān)判定方法是解題關(guān)鍵.2、BCD【解析】【分析】在同圓或是等圓中,相等的圓心角所對的弧相等,所對的弦相等;在同圓或等圓中,能夠互相重合的兩條弧是等弧,據(jù)此判斷就可以得到正確答案.【詳解】解:A、等弧對等弦,正確;B、缺少前提在同圓或等圓中,故選項錯誤;C、缺少前提在同圓或等圓中,故選項錯誤;D、缺少前提在同圓或等圓中,故選項錯誤;故選:BCD【考點】本題考查等弧的概念和圓心角、弦、弧之間的關(guān)系,根據(jù)相關(guān)知識點解題是關(guān)鍵.3、ABCD【解析】【分析】根據(jù)方程、方程的解的有關(guān)定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當(dāng)k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關(guān)鍵.4、ABD【解析】【分析】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=
5時,都是y
=
7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,根據(jù)對稱軸和圖表可得到頂點坐標(biāo),拋物線與y軸的交點坐標(biāo),拋物線與x軸的另一個交點坐標(biāo)以及x=﹣1時,對應(yīng)的函數(shù)值,判斷即可.【詳解】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=
5時,都是y
=
7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,拋物線的頂點坐標(biāo)為(1,-
9),A正確,符合題意;由圖表可知拋物線與y軸的交點坐標(biāo)為(0,-8),B正確,符合題意;拋物線過點(-2,0),根據(jù)拋物線的對稱性可知:拋物線與x軸的另一個交點坐標(biāo)為(4,0),C錯誤,不符合題意;由拋物線的對稱性可知:當(dāng)x=-1時,對應(yīng)的函數(shù)值與x=3時相同,對應(yīng)的函數(shù)值y
=-5,D正確,符合題意,故答案為:ABD.【考點】此題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握拋物線的圖象和性質(zhì),同時會根據(jù)圖象得到信息.5、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當(dāng)a=0時,不是一元二次方程,當(dāng)a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.三、填空題1、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.2、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、【分析】直接利用概率公式進(jìn)行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機(jī)事件的概率,熟練的利用概率公式進(jìn)行計算是解本題的關(guān)鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.4、0.95【解析】【分析】利用大量重復(fù)試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計值是0.95,故答案為:0.95.【考點】此題考查了利用頻率估計概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關(guān)鍵.5、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.四、簡答題1、(1)y=﹣;(2)點R的縱坐標(biāo)為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標(biāo)為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點R的縱坐標(biāo)為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設(shè)其橫坐標(biāo)為m,然后用其分別表示出相關(guān)點的坐標(biāo),并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達(dá)式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設(shè)點R的縱坐標(biāo)為n,則QN=|n|,如果△AOK與以O(shè),Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標(biāo)為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點,∴設(shè)點C坐標(biāo)為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設(shè)CE解析式為:y=﹣x+b,將點E坐標(biāo)代入得b=.∴CE解析式為:y=﹣x﹣,∵點N的縱坐標(biāo)是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點N坐標(biāo)為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點C坐標(biāo)為(﹣1,3).答:點C坐標(biāo)為(﹣1,3).【考點】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項知識點與能力,難度較大.2、(1)a=-1;坐標(biāo)為,;(2).【解析】【分析】(1)利用拋物線的對稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點坐標(biāo);(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時,y<0,即-1-2+m<0;當(dāng)x=-1時,y≥0,即-1+2+m≥0,然后解兩個不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當(dāng)時,,解得,,所以拋物線與軸的交點坐標(biāo)為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對稱軸為直線,∵拋物線與軸的交點都在點,之間,∴當(dāng)時,,即,解得;當(dāng)時,,即,解得,∴的取值范圍為.【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.五、解答題1、見解析.【解析】【分析】根據(jù)軸對稱圖形和旋轉(zhuǎn)對稱圖形的概念作圖即可得.【詳解】解:根據(jù)剪掉其中兩個方格,使之成為軸對稱圖形;即如圖所示:【考點】本題主要考查利用旋轉(zhuǎn)設(shè)計圖案,解題的關(guān)鍵是掌握軸對稱圖形和旋轉(zhuǎn)對稱圖形的概念.2、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當(dāng)∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 打撈船租用協(xié)議書
- 布草租賃合同協(xié)議
- 微網(wǎng)搭建合同范本
- 征收統(tǒng)遷協(xié)議書
- 影視客戶協(xié)議書
- 音響出借合同范本
- 英國王室協(xié)議書
- 資源置換協(xié)議書
- 學(xué)生自殘協(xié)議書
- 裝修防火協(xié)議書
- 2025人教版七年級下冊英語寒假預(yù)習(xí)重點語法知識點清單
- 2025新高考數(shù)學(xué)核心母題400道(教師版)
- CWAN 0020-2022 機(jī)器人焊接技能競賽團(tuán)體標(biāo)準(zhǔn)
- 浙江省溫州市2023-2024學(xué)年六年級上學(xué)期期末科學(xué)試卷(含答案)1
- 中國文化:復(fù)興古典 同濟(jì)天下學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《底層邏輯》劉潤
- 家電的購銷合同電子版
- 社會穩(wěn)定風(fēng)險評估 投標(biāo)方案(技術(shù)標(biāo))
- T-NMAAA.0002-2021 營運機(jī)動車停運損失鑒定評估規(guī)范
- 現(xiàn)代藝術(shù)館建筑方案
- 農(nóng)產(chǎn)品加工專業(yè)職業(yè)生涯規(guī)劃書
評論
0/150
提交評論