2025年人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試試卷(解析版含答案)_第1頁
2025年人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試試卷(解析版含答案)_第2頁
2025年人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試試卷(解析版含答案)_第3頁
2025年人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試試卷(解析版含答案)_第4頁
2025年人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試試卷(解析版含答案)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,,將繞點逆時針旋轉(zhuǎn)得到,其中點與點是對應(yīng)點,且點在同一條直線上;則的長為(

)A. B. C. D.2、如圖,在中,,將繞點逆時針旋轉(zhuǎn)到的位置,使得,則的度數(shù)是(

)A. B. C. D.3、如圖,在正方形ABCD中,將邊BC繞點B逆時針旋轉(zhuǎn)至,連接,,若,,則線段BC的長度為().A.4 B.5 C. D.4、在平面直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)是(

)A. B. C. D.5、如圖,已知點O(0,0),P(1,2),將線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),則第19秒時,點O的對應(yīng)點坐標(biāo)為()A.(0,0) B.(3,1) C.(﹣1,3) D.(2,4)6、如圖,矩形ABCD繞點A逆時針旋轉(zhuǎn)α(0°<α<90°)得到矩形AB'C′D',此時點B′恰好在DC邊上,若∠B'BC=15°,則α的大小為()A.15° B.25° C.30° D.45°7、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(

)A.30° B.90° C.120° D.180°8、若點P(2,)與點Q(,)關(guān)于原點對稱,則m+n的值分別為(

)A. B. C.1 D.59、2020年7月20日,寧津縣人民政府印發(fā)《津縣城市生活垃圾分類制度實施方案》的通知,全面推行生活垃圾分類.下列垃圾分類標(biāo)志分別是廚余垃圾、有害垃圾、其他垃圾和可回收物,其中既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.10、如圖,在鈍角中,,將繞點順時針旋轉(zhuǎn)得到,點,的對應(yīng)點分別為,,連接.則下列結(jié)論一定正確的是(

)A. B. C. D.平分第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAB,,點O為坐標(biāo)原點,點B在x軸上,點A的坐是(1,1).若將繞點O順時針方向依次旋轉(zhuǎn)45°后得到,,,…,可得,,,…,則的坐標(biāo)是______.2、如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,點D在線段BC上,BD=3,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,EF⊥AC,垂足為點F.則AF的長為________.3、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.4、如圖,把△ABC繞點C順時針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A度數(shù)為___________.5、如圖,將繞點O旋轉(zhuǎn)得到,若,則__________,__________,__________.6、如圖,將等邊△AOB放在平面直角坐標(biāo)系中,點A的坐標(biāo)為,點B在第一象限,將等邊△AOB繞點O順時針旋轉(zhuǎn)180°得到△A′OB′,則點B′的坐標(biāo)是__________.7、在△ABC中,AB=AC=3,BC=2,將△ABC繞著點B順時針旋轉(zhuǎn),如果點A落在射線BC上的點A'處.那么AA'=_____.8、問題背景:如圖,將繞點逆時針旋轉(zhuǎn)60°得到,與交于點,可推出結(jié)論:問題解決:如圖,在中,,,.點是內(nèi)一點,則點到三個頂點的距離和的最小值是___________9、如圖,在菱形OBCD中,OB=1,相鄰兩內(nèi)角之比為1:2,將菱形OBCD繞頂點O順時針旋轉(zhuǎn)90°,得到菱形OB′C′D′視為一次旋轉(zhuǎn),則菱形旋轉(zhuǎn)45次后點C的坐標(biāo)為_____.10、若點與關(guān)于原點對稱,則__.三、解答題(6小題,每小題5分,共計30分)1、在中,,,直線MN經(jīng)過點C且于D,于E.(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:①≌;②;(2)當(dāng)直線MN燒點C旋轉(zhuǎn)到圖2的位置時,求證:;(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明.2、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉(zhuǎn)得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當(dāng)?shù)拈L度為多少時,為等腰三角形?3、已知和都是等腰直角三角形,.(1)如圖1,連接,,求證:;(2)將繞點O順時針旋轉(zhuǎn).①如圖2,當(dāng)點M恰好在邊上時,求證:;②當(dāng)點A,M,N在同一條直線上時,若,,請直接寫出線段的長.4、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點,將點O沿BC翻折得到點,將ABC繞點順時針旋轉(zhuǎn),使點B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點M為BE的中點,連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.5、如圖,平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐標(biāo)系中畫出與△ABC關(guān)于點P(1,0)成中心對稱的△A'B'C',并分別寫出點A',B',C'的坐標(biāo);(2)如果點M(a,b)是△ABC邊上(不與A,B,C重合)任意一點,請寫出在△A'B'C'上與點M對應(yīng)的點M'的坐標(biāo).6、在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關(guān)于直線BC的對稱點為A′,連接A′B,點P為直線BC上的動點(不與點B重合),連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)60°,得到線段PD,連接A′D,BD.【問題發(fā)現(xiàn)】(1)如圖1,當(dāng)點D在直線BC上時,線段BP與A′D的數(shù)量關(guān)系為,∠DA′B=;【拓展探究】(2)如圖2,當(dāng)點P在BC的延長線上時,(1)中結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;【問題解決】(3)當(dāng)∠BDA′=30°時,求線段AP的長度.-參考答案-一、單選題1、A【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故選:A.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,在解決旋轉(zhuǎn)問題時,要借助旋轉(zhuǎn)的性質(zhì)找到旋轉(zhuǎn)角和旋轉(zhuǎn)后對應(yīng)的量.2、C【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得AC′=AC,∠B′AB=∠C′AC,再根據(jù)等腰三角形的性質(zhì)得∠AC′C=∠ACC′,然后根據(jù)平行線的性質(zhì)由CC′∥AB得∠ACC′=∠CAB=70°,則∠AC′C=∠ACC′=70°,再根據(jù)三角形內(nèi)角和計算出∠CAC′=40°,所以∠B′AB=40°.【詳解】∵繞點逆時針旋轉(zhuǎn)到的位置,∴,,∴,∵,∴,∴,∴,∴,故選C.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了平行線的性質(zhì).3、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可知BC=BC'.取點O為線段CC'的中點,并連接BO.根據(jù)等腰三角形三線合一的性質(zhì)、正方形的性質(zhì)及直角三角形的性質(zhì),可證得Rt△OBC≌Rt△C'CD,從而證得OC=C'D,BO=CC',再利用勾股定理即可求解.【詳解】解:如圖,取點O為線段CC'的中點,并連接BO.依題意得,BC=BC'∴BO⊥CC'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠CC'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB=∠C'DC在Rt△OBC和Rt△C'CD中∴Rt△OBC≌Rt△C'CD(AAS)∴OC=C'D=2∴CC'=2OC=2×2=4∴BO=CC'=4在Rt△BOC中BC===故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理的運用等知識,解題的關(guān)鍵是輔助線的添加.4、C【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點解答.【詳解】解:點P(-3,-5)關(guān)于原點對稱的點的坐標(biāo)是(3,5),故選:C.【考點】本題考查的是關(guān)于原點的對稱的點的坐標(biāo),平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù).5、B【解析】【分析】依據(jù)線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),即可得到19秒后點O旋轉(zhuǎn)到點O'的位置,再根據(jù)全等三角形的對應(yīng)邊相等,即可得到點O的對應(yīng)點O'的坐標(biāo).【詳解】解:如圖所示,∵線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),每4秒一個循環(huán),19=4×4+3,∴3×90°=270°,∴19秒后點O旋轉(zhuǎn)到點O'的位置,∠OPO'=90°,如圖所示,過P作MN⊥y軸于點M,過O'作O'N⊥MN于點N,則∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',在△OPM和△PO'N中,,∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,點O'離x軸的距離為2-1=1,∴點O'的坐標(biāo)為(3,1),故選:B.【考點】本題主要考查了坐標(biāo)與圖形變化,圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標(biāo).6、C【解析】【分析】由矩形的性質(zhì),可知∠ABC=90°,再由旋轉(zhuǎn),可知△ABB’為等腰三角形,根據(jù)內(nèi)角和求解即可.【詳解】解:連接BB′.∵四邊形ABCD是矩形,∴∠ABC=90°,∵∠CBB′=15°,∴∠ABB′=90°-15°=75°,∵AB=AB′,∴∠ABB′=∠AB′B=75°,∴∠BAB′=180°-2×75°=30°,∴α=30°,故選:C.【考點】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.7、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.8、B【解析】【分析】根據(jù)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)解答.【詳解】解:∵P(2,-n)與點Q(-m,-3)關(guān)于原點對稱,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故選:B.【考點】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律.9、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念去判斷即可.【詳解】A、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;B、是軸對稱圖形也是中心對稱圖形,故滿足題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;D、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形,關(guān)鍵是緊扣軸對稱圖形和中心對稱圖形的概念.10、D【解析】【分析】根據(jù)旋轉(zhuǎn)可知△CAB≌△EAD,∠CAE=70°,結(jié)合∠BAC=35°,可知∠BAE=35°,則可證得△CAB≌△EAB,即可作答.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì)可知△CAB≌△EAD,∠CAE=70°,∴∠BAE=∠CAE-∠CAB=70°-35°=35°,AC=AE,AB=AD,BC=DE,∠ABC=∠ADE,故A、B錯誤,∴∠CAB=∠EAB,∵AC=AE,AB=AB,∴△CAB≌△EAB,∴△EAB≌△EAD∴∠BEA=∠DEA,∴AE平分∠BED,故D正確,∴AD+BE=AB+BE>AE=AC,故C錯誤,故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)和全等三角形的判定與性質(zhì),求出∠BAE=35°是解答本題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)題意求出:,,,,,的坐標(biāo),推導(dǎo)出每旋轉(zhuǎn)8次為一個循環(huán),再由,求出對應(yīng)的點坐標(biāo)即可.【詳解】解:根據(jù)題意得:,,,,,,,,…,∴可推導(dǎo)一般性規(guī)律:點坐標(biāo)的變化每旋轉(zhuǎn)8次為一個循環(huán),∵,∴的坐標(biāo)是.故答案為:.【考點】本題主要考查了圖形的旋轉(zhuǎn),點坐標(biāo)的規(guī)律探究.解題的關(guān)鍵在于推導(dǎo)出一般性規(guī)律.2、1【解析】【分析】根據(jù)勾股定理先求出BC邊長,再求出DC長,過點D作DM垂直AC,可證,即AF=DM,在等腰直角△DMC中可求DM,即可直接求解.【詳解】解:在Rt△ABC中,∠BAC=90°,AB=AC=4,根據(jù)勾股定理得,AB2+AC2=BC2,∴.又∵BD=3,∴DC=BC?BD=.過點D作DM⊥AC于點M,由旋轉(zhuǎn)的性質(zhì)得∠DAE=90°,AD=AE,∴∠DAC+∠EAF=90°.又∵∠DAC+∠ADM=90°,∴∠ADM=∠EAF.在Rt△ADM和Rt△EAF中,.∴(AAS),∴AF=DM.在等腰Rt△DMC中,由勾股定理得,DM2+MC2=DC2,∴DM=1,∴AF=DM=1.故答案為:1.【考點】本題主要考查等腰直角三角形,旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),證明△ADM≌△EAF是解答本題的關(guān)鍵.3、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.4、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因為的對應(yīng)角是,即可求出的度數(shù).【詳解】繞著點時針旋轉(zhuǎn),得到,的對應(yīng)角是故答案為:.【考點】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對應(yīng)角.5、

1

【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前、后的兩個圖形全等,旋轉(zhuǎn)角相等,可得出答案.【詳解】∵∠BAC+∠C=60°∴∠ABC=180°-60°=120°∵△ABC繞點O旋轉(zhuǎn)得到△A′B′C′∴△ABC≌△A′B′C′∴AC=A′C′,∠ABC=∠A′B′C′∵AC=1,∠ABC=120°∴A′C′=1,∠A′B′C′=120°∵△ABC繞點O旋轉(zhuǎn)得到△A′B′C′,∠AOA′=50°,∴∠AOA′=∠BOB′=50°′∵∠A′OB=30°∴∠A′OB′=50°-30°=20°故答案為:1,20°,120°【考點】本題考察了旋轉(zhuǎn)的性質(zhì).做題的關(guān)鍵是明白旋轉(zhuǎn)前、后的兩個圖形全等,找到對應(yīng)邊和對應(yīng)角;旋轉(zhuǎn)角相等,找到旋轉(zhuǎn)角即可.6、【解析】【分析】先根據(jù)等邊三角形的性質(zhì)、點A坐標(biāo)求出點B坐標(biāo),再根據(jù)點坐標(biāo)關(guān)于原點對稱規(guī)律:橫坐標(biāo)和縱坐標(biāo)均變?yōu)橄喾磾?shù),即可得出答案.【詳解】如圖,作軸于H為等邊三角形,點B坐標(biāo)為等邊繞點O順時針旋轉(zhuǎn)得到點與點B關(guān)于原點O對稱點的坐標(biāo)是故答案為:.【考點】本題考查了等邊三角形的性質(zhì)、圖形旋轉(zhuǎn)的性質(zhì)等知識點,根據(jù)等邊三角形的性質(zhì)和點A坐標(biāo)求出點B坐標(biāo)是解題關(guān)鍵.7、2【解析】【分析】作AH⊥BC于H,如圖,利用等腰三角形的性質(zhì)得BH=CH=BC=1,利用勾股定理可計算出AH=2,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA′=BA=3,則HA′=2,然后利用勾股定理可計算出AA′的長.【詳解】解:作AH⊥BC于H,如圖,∵AB=AC=3,BC=2,∴BH=CH=BC=1,∴AH=,∵△ABC繞著點B順時針旋轉(zhuǎn),如果點A落在射線BC上的點A'處,∴BA′=BA=3,∴HA′=2,在Rt△AHA′中,AA′=.故答案為2.【考點】此題考查旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),解題關(guān)鍵在于掌握對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.8、【解析】【分析】如圖,將△MOG繞點M逆時針旋轉(zhuǎn)60°,得到△MPQ,易知△MOP為等邊三角形,繼而得到點O到三頂點的距離為:ON+OM+OG=ON+OP+PQ,由此可以發(fā)現(xiàn)當(dāng)點N、O、P、Q在同一條直線上時,有ON+OM+OG最小,此時,∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,利用勾股定理進(jìn)行求解即可得.【詳解】如圖,將△MOG繞點M逆時針旋轉(zhuǎn)60°,得到△MPQ,顯然△MOP為等邊三角形,∴,OM+OG=OP+PQ,∴點O到三頂點的距離為:ON+OM+OG=ON+OP+PQ,∴當(dāng)點N、O、P、Q在同一條直線上時,有ON+OM+OG最小,此時,∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,則∠MAQ=90°,∴∠AMQ=180°-∠NMQ=45°,∵M(jìn)Q=MG=4,∴AQ=AM=MQ?cos45°=4,∴NQ=,故答案為.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),最短路徑問題,勾股定理,解直角三角形等知識,綜合性較強,有一定的難度,正確添加輔助線是解題的關(guān)鍵.9、(,﹣)【解析】【分析】先求出菱形的內(nèi)角度數(shù),過作軸于點,在△中,利用特殊角度數(shù)及邊長求解和長,則點坐標(biāo)可求,由,得出菱形4次旋轉(zhuǎn)一周,4次一個循環(huán),由,得出菱形旋轉(zhuǎn)45次后點與點重合,即可得出答案.【詳解】解:∵四邊形OBCD是菱形,相鄰兩內(nèi)角之比為1:2,∴∠C=∠BOD=60°,∠D=∠OBC=120°.根據(jù)旋轉(zhuǎn)性質(zhì)可得∠OB′C′=120°,∴∠C′B′H=60°.過C′作C′H⊥y軸于點H,如圖所示:在Rt△C′B′H中,B′C′=1,,..坐標(biāo)為,,∵360°÷90°=4,∴菱形4次旋轉(zhuǎn)一周,4次一個循環(huán),∵45÷4=11……1,菱形旋轉(zhuǎn)45次后點與點重合,坐標(biāo)為,;故答案為:,.【考點】本題主要考查了菱形的性質(zhì),旋轉(zhuǎn)的性質(zhì),以及坐標(biāo)與圖形變化,解決此類問題要熟知旋轉(zhuǎn)后的不變量,得出規(guī)律是解題的關(guān)鍵.10、【解析】【分析】根據(jù)原點對稱的點的特征求解即可;【詳解】點與點關(guān)于原點對稱,,,故.故答案為:.【考點】本題主要考查了關(guān)于原點對稱的點的坐標(biāo),準(zhǔn)確計算是解題的關(guān)鍵.三、解答題1、(1)①證明見解析;②證明見解析(2)證明見解析(3)(或者對其恒等變形得到,),證明見解析【解析】【分析】(1)①根據(jù),,,得出,再根據(jù)即可判定;②根據(jù)全等三角形的對應(yīng)邊相等,即可得出,,進(jìn)而得到;(2)先根據(jù),,得到,進(jìn)而得出,再根據(jù)即可判定,進(jìn)而得到,,最后得出;(3)運用(2)中的方法即可得出,,之間的等量關(guān)系是:或恒等變形的其他形式.(1)解:①,,,,,,在和中,;②,,,;(2)證明:,,,,在和中,;,,;(3)證明:當(dāng)旋轉(zhuǎn)到題圖(3)的位置時,,,所滿足的等量關(guān)系是:或或.理由如下:,,,,在和中,,,,(或者對其恒等變形得到或).【考點】本題屬于三角形綜合題,主要考查了全等三角形的判定與性質(zhì)的綜合應(yīng)用,解題時注意:全等三角形的對應(yīng)邊相等,同角的余角相等,解決問題的關(guān)鍵是根據(jù)線段的和差關(guān)系進(jìn)行推導(dǎo),得出結(jié)論.2、(1)見詳解;(2)①見詳解;②當(dāng)?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進(jìn)而即可得到結(jié)論;(2)①由,得AH=AG,再證明,進(jìn)而即可得到結(jié)論;②為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時,(b)當(dāng)∠GAQ=∠GQA=67.5°時,(c)當(dāng)∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉(zhuǎn)得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,點,分別為,的中點,∴AE=AF=2,∵∠AGH=45°,為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時,如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點H是EF的中點,∴EH=;(b)當(dāng)∠GAQ=∠GQA=(180°-45°)÷2=67.5°時,如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)當(dāng)∠AQG=∠AGQ=45°時,點H與點F重合,不符合題意,舍去,綜上所述:當(dāng)?shù)拈L度為2或時,為等腰三角形.【考點】本題主要考查等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,熟練掌握全等三角形的判定定理,根據(jù)題意畫出圖形,進(jìn)行分類討論,是解題的關(guān)鍵.3、(1)見解析;(2)①見解析;②或【解析】【分析】(1)證明△AMO≌△BNO即可;(2)①連接BN,證明△AMO≌△BNO,得到∠A=∠OBN=45°,進(jìn)而得到∠MBN=90°,且△OMN為等腰直角三角形,再在△BNM中使用勾股定理即可證明;②分兩種情況分別畫出圖形即可求解.【詳解】解:(1)∵和都是等腰直角三角形,∴,又,,∴,∴,∴;(2)①連接BN,如下圖所示:∴,,且,∴,∴,,∴,且為等腰直角三角形,∴,在中,由勾股定理可知:,且∴;②分類討論:情況一:如下圖2所示,設(shè)AO與NB交于點C,過O點作OH⊥AM于H點,,為等腰直角三角形,∴,在中,,∴;情況二:如下圖3所示,過O點作OH⊥AM于H點,,為等腰直角三角形,∴,在中,,∴;故或.【考點】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.4、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點,得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點,∴,∴,∴,∵將點O沿BC翻折得到點,∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M(jìn)為BE的中點,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點,∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).5、(1)△A'B'C'見解析,A′(3,2),B′(4,4),C′(6,1);(2)M′(2?a,?b).【解析】【分析】(1)分別作出A,B,C的對應(yīng)點A′、B′、C′,然后順次連接可得△A'B'C',再根據(jù)所作圖形寫出坐標(biāo)即可.(2)利用中點坐標(biāo)公式計算即可.【詳解】解:(1)△A'B'C'如圖所示,A′(3,2),B′(4,4),C′(6,1);(2)設(shè)M′(m,n),則有,,∴m=2?a,n=?b,∴M′(2?a,?b).【考點】本題考查作圖?中心對稱,解題的關(guān)鍵是熟練掌握中心對稱的性質(zhì),正確找出對應(yīng)點位置.6、(1)相等;90°;(2)成立,證明見解析;(3)線段AP的長度為4或4.【解析】【分析】(1)首先推知AP=PB,PC=AP,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)如圖②,連接AD,根據(jù)等邊三角形的性質(zhì)得到AB=AA′,由旋轉(zhuǎn)的性質(zhì)得到AP=D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論