強(qiáng)化訓(xùn)練人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試試題(解析版)_第1頁(yè)
強(qiáng)化訓(xùn)練人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試試題(解析版)_第2頁(yè)
強(qiáng)化訓(xùn)練人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試試題(解析版)_第3頁(yè)
強(qiáng)化訓(xùn)練人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試試題(解析版)_第4頁(yè)
強(qiáng)化訓(xùn)練人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試試題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,正方形的邊長(zhǎng)為4,以點(diǎn)為圓心,為半徑畫圓弧得到扇形(陰影部分,點(diǎn)在對(duì)角線上).若扇形正好是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.2、已知一個(gè)三角形的三邊長(zhǎng)分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.3、如圖,AB是⊙O的直徑,點(diǎn)E是AB上一點(diǎn),過(guò)點(diǎn)E作CD⊥AB,交⊙O于點(diǎn)C,D,以下結(jié)論正確的是()A.若⊙O的半徑是2,點(diǎn)E是OB的中點(diǎn),則CD=B.若CD=,則⊙O的半徑是1C.若∠CAB=30°,則四邊形OCBD是菱形D.若四邊形OCBD是平行四邊形,則∠CAB=60°4、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.5、如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°6、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的側(cè)面和底面,則的長(zhǎng)為(

)A. B. C. D.7、如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°8、如圖所示,一個(gè)半徑為r(r<1)的圖形紙片在邊長(zhǎng)為10的正六邊形內(nèi)任意運(yùn)動(dòng),則在該六邊形內(nèi),這個(gè)圓形紙片不能接觸到的部分面積是(

)A. B.C. D.9、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點(diǎn)E,下列判斷正確的是(

A.AG平分CDB.C.點(diǎn)E是△ABC的內(nèi)心D.點(diǎn)E到點(diǎn)A,B,C的距離相等10、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(

)A. B.C. D.到、的距離相等第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑畫弧,剛好過(guò)點(diǎn)O,以點(diǎn)D為圓心,DO的長(zhǎng)為半徑畫弧,交AD于點(diǎn)E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)2、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長(zhǎng)為__________.3、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.4、如圖,,在射線AC上順次截取,,以為直徑作交射線于、兩點(diǎn),則線段的長(zhǎng)是__________cm.5、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個(gè)內(nèi)接正多邊形的一邊,則這個(gè)正多邊形的邊數(shù)為_____.6、如圖,已知是的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長(zhǎng)為______.7、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.8、如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32°,則∠D=_____度.9、一個(gè)圓錐的底面半徑r=6,高h(yuǎn)=8,則這個(gè)圓錐的側(cè)面積是_____.10、如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在四邊形中,,.是四邊形內(nèi)一點(diǎn),且.求證:(1);(2)四邊形是菱形.2、如圖,一根長(zhǎng)的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動(dòng)),請(qǐng)畫出羊的活動(dòng)區(qū)域.3、如圖,是的高,為的中點(diǎn).試說(shuō)明點(diǎn)在以點(diǎn)為圓心的同一個(gè)圓上.4、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過(guò)圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長(zhǎng).5、如圖,在中,.(1)請(qǐng)作出經(jīng)過(guò)A、B兩點(diǎn)的圓,且該圓的圓心O落在線段AC上(尺規(guī)作圖,保留作圖痕跡,不寫做法);(2)在(1)的條件下,已知,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與⊙O交于點(diǎn)E.試證明:B、C、E三點(diǎn)共線.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長(zhǎng)即為圓錐底面圓的周長(zhǎng),即通過(guò)計(jì)算弧DE的長(zhǎng),再結(jié)合圓的周長(zhǎng)公式進(jìn)行計(jì)算即可得解.【詳解】∵正方形的邊長(zhǎng)為4∴∵是正方形的對(duì)角線∴∴∴圓錐底面周長(zhǎng)為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點(diǎn)】本題主要考查了扇形的弧長(zhǎng)公式,圓的周長(zhǎng)公式,正方形的性質(zhì)以及圓錐的相關(guān)知識(shí)點(diǎn),熟練掌握弧長(zhǎng)公式及圓的周長(zhǎng)公式是解決本題的關(guān)鍵.2、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見(jiàn)解析),過(guò)點(diǎn)A作于D,利用勾股定理可求出AD的長(zhǎng),再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點(diǎn)為,則過(guò)點(diǎn)A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點(diǎn)】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識(shí)點(diǎn),讀懂題意,正確畫出圖形,并求出AD的長(zhǎng)是解題關(guān)鍵.3、C【解析】【分析】根據(jù)垂徑定理,解直角三角形知識(shí),一一求解判斷即可.【詳解】解:A、∵OC=OB=2,∵點(diǎn)E是OB的中點(diǎn),∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本選項(xiàng)錯(cuò)誤不符合題意;B、根據(jù),缺少條件,無(wú)法得出半徑是1,本選項(xiàng)錯(cuò)誤,不符合題意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四邊形OCBD是菱形;故本選項(xiàng)正確本選項(xiàng)符合題意.D、∵四邊形OCBD是平行四邊形,OC=OD,所以四邊形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本選項(xiàng)錯(cuò)誤不符合題意..故選:C.【考點(diǎn)】本題考查了圓周角定理,垂徑定理,菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的理解題意是解題的關(guān)鍵.4、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個(gè)內(nèi)角,再根據(jù)等邊對(duì)等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點(diǎn)】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算,掌握?qǐng)A內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算是解題關(guān)鍵.5、C【解析】【分析】由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對(duì)角可得答案.【詳解】解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選:C.【考點(diǎn)】本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).6、B【解析】【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng)列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【考點(diǎn)】本題考查了圓錐的計(jì)算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來(lái)的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).7、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點(diǎn)】本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.8、C【解析】【分析】當(dāng)運(yùn)動(dòng)到正六邊形的角上時(shí),圓與兩邊的切點(diǎn)分別為,,連接,,,根據(jù)正六邊形的性質(zhì)可知,故,再由銳角三角函數(shù)的定義用表示出的長(zhǎng),可知圓形紙片不能接觸到的部分的面積,由此可得出結(jié)論.【詳解】解:如圖所示,連接,,,此多邊形是正六邊形,,.,,,圓形紙片不能接觸到的部分的面積.故選:C.【考點(diǎn)】本題考查的是正多邊形和圓,熟知正六邊形的性質(zhì)是解答此題的關(guān)鍵.9、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點(diǎn)為△ABC的內(nèi)心故答案為:C.【考點(diǎn)】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.10、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對(duì)圓心角相等,即,所對(duì)優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯(cuò)誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.二、填空題1、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長(zhǎng),∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點(diǎn)】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.2、【解析】【分析】將圓錐的側(cè)面展開,設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開,得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長(zhǎng)為.故答案為:.【考點(diǎn)】本題考查了平面展開?最短路徑問(wèn)題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.3、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點(diǎn)】本題考查了圓周角定理及其推論:同弧所對(duì)的圓周角相等;半圓(?。┖椭睆剿鶎?duì)的圓周角是直角,正確添加輔助線是解題的關(guān)鍵.4、6【解析】【分析】過(guò)點(diǎn)作于,連,根據(jù)垂徑定理得,在中,,,利用含30度的直角三角形三邊的關(guān)系可得到,再利用勾股定理計(jì)算出,由得到答案.【詳解】解:過(guò)點(diǎn)作于,連,如圖則,在中,,,則,在中,,,則,則.故答案為6.【考點(diǎn)】本題考查了垂徑定理,含30度的直角三角形三邊的關(guān)系以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.5、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計(jì)算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計(jì)算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個(gè)正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個(gè)正十二邊形的一邊.故答案為:12.【考點(diǎn)】本題考查了正多邊形與圓:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.6、9【解析】【分析】連接OC和OE,由同弧所對(duì)的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對(duì)的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識(shí)點(diǎn),本題的關(guān)鍵是求出∠COB=60°.7、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.8、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計(jì)算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.9、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問(wèn)題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點(diǎn)】本題考查了圓錐的側(cè)面積,勾股定理等知識(shí),解題的關(guān)鍵是記住圓錐的側(cè)面積公式.10、72°【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【考點(diǎn)】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】【詳解】分析:(1)先證點(diǎn)、、共圓,從而得到,又,即可得出結(jié)論;(2)連接,證得到又由于,,結(jié)合可得BO=BC,從而四邊形是菱形.詳解:(1)∵.∴點(diǎn)、、在以點(diǎn)為圓心,為半徑的圓上.∴.又,∴.(2)證明:如圖②,連接.∵,,,∴.∴,.∵,,∴,.又.∴,∴.又,,∴,∴四邊形是菱形.點(diǎn)睛:本題考查圓周角定理、全等三角形的判定和性質(zhì)、菱形的判定等知識(shí),解題的關(guān)鍵是靈活應(yīng)用圓周角定理,學(xué)會(huì)添加常用輔助線,屬于中考??碱}型2、見(jiàn)解析【解析】【分析】根據(jù)題意畫出兩個(gè)扇形即可得到羊的活動(dòng)區(qū)域.【詳解】解:如圖,以點(diǎn)O為圓心,5m長(zhǎng)的繩子為半徑畫弧交草地左邊界于點(diǎn)A,交OD的延長(zhǎng)線于點(diǎn)B,再以D為圓心,DB長(zhǎng)為半徑畫弧交草地的右邊界于點(diǎn)C,則扇形AOB和扇形B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論