2025吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題附參考答案詳解(精練)_第1頁(yè)
2025吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題附參考答案詳解(精練)_第2頁(yè)
2025吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題附參考答案詳解(精練)_第3頁(yè)
2025吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題附參考答案詳解(精練)_第4頁(yè)
2025吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題附參考答案詳解(精練)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省洮南市中考數(shù)學(xué)高頻難、易錯(cuò)點(diǎn)題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,正五邊形內(nèi)接于⊙,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),則的度數(shù)為(

)A. B. C. D.2、把拋物線向右平移2個(gè)單位,然后向下平移1個(gè)單位,則平移后得到的拋物線解析式是(

)A. B.C. D.3、方程y2=-a有實(shí)數(shù)根的條件是(

)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實(shí)數(shù)4、在不透明口袋內(nèi)裝有除顏色外完全相同的5個(gè)小球,其中紅球2個(gè),白球3個(gè).?dāng)嚢杈鶆蚝?,隨機(jī)抽取一個(gè)小球,是紅球的概率為()A. B. C. D.5、下列事件為隨機(jī)事件的是()A.四個(gè)人分成三組,恰有一組有兩個(gè)人 B.購(gòu)買(mǎi)一張福利彩票,恰好中獎(jiǎng)C.在一個(gè)只裝有白球的盒子里摸出了紅球 D.?dāng)S一次骰子,向上一面的點(diǎn)數(shù)小于7二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長(zhǎng)BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則2、下列四個(gè)說(shuō)法中,不正確的是(

)A.一元二次方程有實(shí)數(shù)根B.一元二次方程有實(shí)數(shù)根C.一元二次方程有實(shí)數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實(shí)數(shù)根3、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構(gòu)成的圖形記作C2,將C1和C2構(gòu)成的圖形記作C3.關(guān)于圖形C3,給出的下列四個(gè)結(jié)論,正確的是(

)A.圖形C3恰好經(jīng)過(guò)4個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))B.圖形C3上任意一點(diǎn)到原點(diǎn)的最大距離是1C.圖形C3的周長(zhǎng)大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π4、如圖,PA、PB是的切線,切點(diǎn)分別為A、B,BC是的直徑,PO交于E點(diǎn),連接AB交PO于F,連接CE交AB于D點(diǎn).下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.5、如圖,為的直徑延長(zhǎng)線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、已知中,,,,以為圓心,長(zhǎng)度為半徑畫(huà)圓,則直線與的位置關(guān)系是__________.2、如果一個(gè)扇形的弧長(zhǎng)等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長(zhǎng)等于6,那么這個(gè)扇形的面積等于_____.3、如圖,在中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)4、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績(jī)記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過(guò)計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).5、從﹣2,1兩個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為m,再?gòu)末?,0,2三個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是_____.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽(yáng)光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽(yáng)光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測(cè)得窗子距地面的高度OD=1m,窗高CD=1.5m,并測(cè)得OE=1m,OF=5m,求圍墻AB的高度.2、已知:.(1)求代數(shù)式的值;(2)如果,求的值.五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線相交于點(diǎn)E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長(zhǎng).2、如圖,在中,,,D是邊BC上一點(diǎn),作射線AD,滿足,在射線AD取一點(diǎn)E,且.將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長(zhǎng)交BE于點(diǎn)G.(1)依題意補(bǔ)全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.3、正方形綠化場(chǎng)地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱或中心對(duì)稱圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,并畫(huà)出一條對(duì)稱軸;(2)把圖③補(bǔ)成只是中心對(duì)稱圖形,并把中心標(biāo)上字母P.4、如圖,在中,AB是直徑,弦EF∥AB.(1)請(qǐng)僅用無(wú)刻度的直尺畫(huà)出劣弧EF的中點(diǎn)P;(保留作圖痕跡,不寫(xiě)作法)(2)在(1)的條件下,連接OP交EF于點(diǎn)Q,,,求PQ的長(zhǎng)度.-參考答案-一、單選題1、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點(diǎn)的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對(duì)應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點(diǎn)】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.2、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個(gè)單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個(gè)單位所得拋物線是y=2(x?2)2?1.故選D.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.3、A【解析】【分析】根據(jù)平方的非負(fù)性可以得出﹣a≥0,再進(jìn)行整理即可.【詳解】解:∵方程y2=﹣a有實(shí)數(shù)根,∴﹣a≥0(平方具有非負(fù)性),∴a≤0;故選:A.【考點(diǎn)】此題考查了直接開(kāi)平方法解一元二次方程,關(guān)鍵是根據(jù)已知條件得出﹣a≥0.4、A【分析】用紅球的個(gè)數(shù)除以所有球的個(gè)數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個(gè)球,其中紅球有2個(gè),∴P(摸到紅球)=,故選:A.【點(diǎn)睛】此題主要考查概率的意義及求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個(gè)人分成三組,恰有一組有兩個(gè)人,是必然事件,不合題意;B、購(gòu)買(mǎi)一張福利彩票,恰好中獎(jiǎng),是隨機(jī)事件,符合題意;C、在一個(gè)只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點(diǎn)數(shù)小于7,是必然事件,不合題意;故選:B.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、多選題1、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯(cuò)誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識(shí),證明△ABC是等腰直角三角形是解題的關(guān)鍵.2、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號(hào)就可以了.【詳解】解:、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程有實(shí)數(shù)根,正確,不符合題意;故選:ABC.【考點(diǎn)】本題考查了一元二次方程根的情況與判別式△的關(guān)系:解題的關(guān)鍵是掌握(1)△方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△方程有兩個(gè)相等的實(shí)數(shù)根;(3)△方程沒(méi)有實(shí)數(shù)根.3、ABD【解析】【分析】畫(huà)出圖象C3,以及以O(shè)為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(guò)(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個(gè)整點(diǎn),故正確;B.由圖象可知,圖形C3上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò)1,故正確;C.圖形C3的周長(zhǎng)小于⊙O的周長(zhǎng),所以圖形C3的周長(zhǎng)小于2π,故錯(cuò)誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點(diǎn)】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結(jié)合是解題的關(guān)鍵.4、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯(cuò)誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點(diǎn)】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識(shí),解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.5、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識(shí),熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.三、填空題1、相切【分析】過(guò)點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過(guò)點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點(diǎn)睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.2、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長(zhǎng)等于6,∴半徑r為=2,弧長(zhǎng)l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長(zhǎng)l看成底,R看成底邊上的高即可.3、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點(diǎn)】本題主要考查圓周角定理、扇形的面積計(jì)算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.4、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.5、【分析】先畫(huà)樹(shù)狀圖列出所有等可能結(jié)果,從中找到使方程有兩個(gè)不相等的實(shí)數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫(huà)樹(shù)狀圖如下:由樹(shù)狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是,故答案為:.【點(diǎn)睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.四、簡(jiǎn)答題1、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長(zhǎng)OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗(yàn):x=4是原方程的解.答:圍墻AB的高度是4m.【考點(diǎn)】此題主要考查了相似三角形的應(yīng)用,解決問(wèn)題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.2、(1)1;(2)【解析】【分析】(1)設(shè)a=2k,b=3k,c=5k,代入代數(shù)式,即可求出答案;(2)把a(bǔ)、b、c的值代入,求出即可.【詳解】∵∴設(shè)a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考點(diǎn)】本題考查了比例的性質(zhì)的應(yīng)用,主要考查學(xué)生的計(jì)算能力.五、解答題1、(1)見(jiàn)解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過(guò)點(diǎn)A作AF⊥EC交EC于點(diǎn)F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論