2025-2026學年度人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習練習題(含答案解析)_第1頁
2025-2026學年度人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習練習題(含答案解析)_第2頁
2025-2026學年度人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習練習題(含答案解析)_第3頁
2025-2026學年度人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習練習題(含答案解析)_第4頁
2025-2026學年度人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習練習題(含答案解析)_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.542、如圖所示,公路AC、BC互相垂直,點M為公路AB的中點,為測量湖泊兩側C、M兩點間的距離,若測得AB的長為6km,則M、C兩點間的距離為()A.2.5km B.4.5km C.5km D.3km3、已知,四邊形ABCD的對角線AC和BD相交于點O.設有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④4、順次連接矩形各邊中點得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形5、如圖,在菱形中,P是對角線上一動點,過點P作于點E.于點F.若菱形的周長為24,面積為24,則的值為()A.4 B. C.6 D.6、下列測量方案中,能確定四邊形門框為矩形的是()A.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量對角線是否相等 D.測量對角線交點到四個頂點的距離是否都相等7、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應點為點B′,AB′與DC相交于點E,則下列結論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE8、菱形ABCD的周長是8cm,∠ABC=60°,那么這個菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm9、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④10、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形ABCD中,AD=3AB,點G,H分別在AD,BC上,連BG,DH,且,當=_______時,四邊形BHDG為菱形.2、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為_____.3、如圖,在平面直角坐標系中,點A,B,C的坐標分別為(8,0),(8,6),(0,6),點D為線段BC上一動點,將△OCD沿OD翻折,使點C落到點E處.當B,E兩點之間距離最短時,點D的坐標為____.4、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點,連接AE.折疊該紙片,使點A落在AE上的G點,并使折痕經(jīng)過點B,得到折痕BF,點F在AD上.若,則GE的長為__________.5、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.6、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.7、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.8、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.9、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側作等腰Rt△ABC,則OC的長為__________________.10、如圖,在正方形ABCD中,AB=2,取AD的中點E,連接EB,延長DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點H在線段AB上,則的值是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在矩形中,,,且四邊形是一個正方形,試問點F是的黃金分割點嗎?請說明理由.(補全解題過程)2、綜合與實踐(1)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關系為.3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點B的坐標;(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點M,點P是AB的中點,連PM,求∠PMO度數(shù);(3)在(2)的條件下,點Q是ON的中點,連PQ,求證:PQ⊥AM.

4、D、分別是不等邊三角形即的邊、的中點.是平面上的一動點,連接、,、分別是、的中點,順次連接點、、、.(1)如圖,當點在內時,求證:四邊形是平行四邊形;(2)若四邊形是菱形,點所在位置應滿足什么條件?(直接寫出答案,不需說明理由.)5、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當點P在線段BD上,且點E在菱形ABCD內部或邊上時,連接CE,則BP與CE的數(shù)量關系是,BC與CE的位置關系是;(2)如圖2,當點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.-參考答案-一、單選題1、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質與三角形的面積公式,掌握是解題的關鍵.2、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M為AB的中點,∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點間的距離為3km,故選:D.【點睛】本題考查了直角三角形的性質,解題關鍵是掌握直角三角形斜邊上的中線的性質:直角三角形斜邊上的中線等于斜邊的一半.3、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關鍵.4、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質證明,再證明四邊形是平行四邊形,再證明從而可得結論.【詳解】解:如圖,矩形中,分別為四邊的中點,,四邊形是平行四邊形,四邊形是菱形.故選C.【點睛】本題考查的是矩形的性質,菱形的判定,三角形的中位線的性質,熟練的運用三角形的中位線的性質解決中點四邊形問題是解本題的關鍵.5、A【解析】【分析】連接BP,通過菱形的周長為24,求出邊長,菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點睛】本題主要考查菱形的性質,解題關鍵在于添加輔助線,通過面積法得出等量關系.6、D【解析】【分析】由平行四邊形的判定與性質、矩形的判定分別對各個選項進行判斷即可.【詳解】解:A、∵對角線互相平分的四邊形是平行四邊形,∴對角線互相平分且相等的四邊形才是矩形,∴選項A不符合題意;B、∵兩組對邊分別相等是平行四邊形,∴選項B不符合題意;C、∵對角線互相平分且相等的四邊形才是矩形,∴對角線相等的四邊形不是矩形,∴選項C不符合題意;D、∵對角線交點到四個頂點的距離都相等,∴對角線互相平分且相等,∵對角線互相平分且相等的四邊形是矩形,∴選項D符合題意;故選:D.【點睛】本題考查了矩形的判定、平行四邊形的判定與性質、解題的關鍵是熟記矩形的判定定理.7、D【解析】【分析】根據(jù)翻折變換的性質可得∠BAC=∠CAB′,根據(jù)兩直線平行,內錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質,平行線的性質,矩形的對邊互相平行,等角對等邊的性質,熟記各性質并準確識圖是解題的關鍵.8、B【解析】【分析】由菱形的性質得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點睛】此題考查了菱形的性質,勾股定理,等邊三角形的性質和判定,解題的關鍵是熟練掌握菱形的性質,勾股定理,等邊三角形的性質和判定方法.9、C【解析】【分析】利用直角三角形斜邊上的中線的性質即可判定①正確;利用含30度角的直角三角形的性質即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質,含30度角的直角三角形的性質,等邊三角形的判定及性質,勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關鍵.10、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質,勾股定理,準確計算是解題的關鍵.二、填空題1、【解析】【分析】設則再利用矩形的性質建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設AD=3AB,設則矩形ABCD,解得:故答案為:【點睛】本題考查的是勾股定理的應用,矩形的性質,菱形的性質,利用圖形的性質建立方程確定之間的關系是解本題的關鍵.2、【解析】【分析】由正方形的對稱性可知,PB=PD,當B、P、E共線時PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關于AC對稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點睛】本題考查軸對稱求最短距離,熟練掌握正方形的性質是解題的關鍵.3、(3,6)【解析】【分析】連接OB,證得當O、E、B在同一直線上時,BE取得最小值,再利用勾股定理構造方程求解即可.【詳解】解:連接OB,∵點A,B,C的坐標分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當O、E、B在同一直線上時,BE取得最小值,此時BE=4,∠DEB=90°,設CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點D的坐標為(3,6).【點睛】本題考查了矩形的判定和性質,坐標與圖形,折疊的性質,勾股定理,解題的關鍵是學會利用參數(shù)構建方程解決問題,4、##【解析】【分析】由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點睛】本題考查了正方形的性質,軸對稱的性質,全等三角形的判定與性質,勾股定理,面積法求線段的長度等,解題關鍵是能夠靈活運用正方形的性質和軸對稱的性質.5、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.6、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質,解題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.7、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質,找到點的位置是四個一循環(huán),每旋轉一次半徑增加2的規(guī)律是解題的關鍵.8、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據(jù)勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質、勾股定理的應用,解此題的關鍵是能根據(jù)計算結果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.9、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當以AB、BC為直角邊作等腰直角三角形時,與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進行分類討論是解題的關鍵.10、【解析】【分析】設,由正方形的性質和勾股定理求出的長,可得的長,再求出的長,得出的長,進而可得結果.【詳解】解:設,四邊形為正方形,,,點為的中點,,,,,四邊形為正方形,,,故答案為:.【點睛】本題考查了正方形的性質以及勾股定理,解題的關鍵是熟練掌握正方形的性質,由勾股定理求出的長.三、解答題1、是,理由見解析【分析】根據(jù)已知得出只需求得其BF與BC的比是否符合黃金比即可.【詳解】解:點F是BC的黃金分割點.理由如下:∵四邊形是一個正方形,∴.又∵在矩形中,BC=AD=2,∴.∴點F是BC的黃金分割點.【點睛】此題主要考查了黃金分割點,根據(jù)已知條件和正方形的性質進行分析求解是解題關鍵.2、(1)MN=AM+CN;(2)MN=AM+CN,理由見解析;(3)MN=CN-AM,理由見解析【分析】(1)把△ABM繞點B順時針旋轉使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點M'、C、N三點共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點B順時針旋轉使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點M'、C、N三點共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點B順時針旋轉使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點M'、C、N三點共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點B順時針旋轉使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點M'、C、N三點共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=CN-CM',∴MN=CN-AM.故答案是:MN=CN-AM.【點睛】本題主要考查了正方形的性質,全等三角形的性質和判定,圖形的旋轉,根據(jù)題意做適當輔助線,得到全等三角形是解題的關鍵.3、(1)(1,4);(2)45°;(3)見解析

【分析】(1)過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點A的坐標為(-4,1),得到OF=AE=1,BF=OE=4,則點B的坐標為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點坐標為(-4,1),B點坐標為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點A的坐標為(-4,1),∴OF=AE=1,BF=OE=4,∴點B的坐標為(1,4);(2)如圖所示,延長MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點P是AB的中點,∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點坐標為(-4,1),B點坐標為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點,G是BM的中點,ON=BM=1,∴,∵P是AB中點,△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點睛】本題主要考查了坐標與圖形,全等三角形的性質與判定,三角形中位線定理,等腰直角三角形的性質與判定等等,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.4、(1)見解析;(2),且點不在射線、射線上【分析】(1)根據(jù)三角形的中位線定理可證得,DE=GF,即可證得結論;(2)根據(jù)三角形的中位線定理結合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點,∴,DE=BC,同理,,GF=BC,∴,DE=GF,∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由如下:連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D、G、F分別是AB、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論