2025年吉林省蛟河市中考數(shù)學達標測試【輕巧奪冠】附答案詳解_第1頁
2025年吉林省蛟河市中考數(shù)學達標測試【輕巧奪冠】附答案詳解_第2頁
2025年吉林省蛟河市中考數(shù)學達標測試【輕巧奪冠】附答案詳解_第3頁
2025年吉林省蛟河市中考數(shù)學達標測試【輕巧奪冠】附答案詳解_第4頁
2025年吉林省蛟河市中考數(shù)學達標測試【輕巧奪冠】附答案詳解_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省蛟河市中考數(shù)學達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷2、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(

)A. B. C. D.3、如圖,一次函數(shù)y=-3x+4的圖象交x軸于點A,交y軸于點B,點P在線段AB上(不與點A,B重合),過點P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時,則點P的坐標為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)4、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°5、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞二、多選題(5小題,每小題3分,共計15分)1、下列說法中,不正確的是()A.三點確定一個圓B.三角形有且只有一個外接圓C.圓有且只有一個內(nèi)接三角形D.相等的圓心角所對的弧相等2、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(

)A. B.C. D.3、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是24、已知A、B兩點的坐標分別是(-2,3)和(2,3),則下面四個結(jié)論正確的有(

)A.A、B關(guān)于x軸對稱; B.A、B關(guān)于y軸對稱;C.A、B關(guān)于原點對稱; D.若A、B之間的距離為45、下列方程一定不是一元二次方程的是(

)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、點(2,-3)關(guān)于原點的對稱點的坐標為_____.2、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.3、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.4、關(guān)于的方程,k=_____時,方程有實數(shù)根.5、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數(shù)為_______.四、簡答題(2小題,每小題10分,共計20分)1、已知二次函數(shù)().(1)求二次函數(shù)圖象的對稱軸;(2)若該二次函數(shù)的圖象開口向上,當時,函數(shù)圖象的最高點為,最低點為,點的縱坐標為,求點和點的坐標;(3)在(2)的條件下,對直線下方二次函數(shù)圖象上的一點,若,求點的坐標.2、如圖,在平面直角坐標系中,點為坐標原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.(1)求拋物線的解析式;(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.五、解答題(4小題,每小題10分,共計40分)1、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數(shù)學劉老師:大家想一想,既然結(jié)果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.3、已知線段AB,用平移、旋轉(zhuǎn)、軸對稱畫出一個以AB為一邊,一個內(nèi)角是30°的菱形.(不寫畫法,保留作圖痕跡).4、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?-參考答案-一、單選題1、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.2、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關(guān)鍵.3、D【解析】【分析】由點P在線段AB上可設(shè)點P的坐標為(m,-3m+4)(0<m<),進而可得出OC=m,OD=-3m+4,結(jié)合矩形OCPD的面積為1,即可得出關(guān)于m的一元二次方程,解之即可得出m的值,再將其代入點P的坐標中即可求出結(jié)論.【詳解】解:∵點P在線段AB上(不與點A,B重合),且直線AB的解析式為y=-3x+4,∴設(shè)點P的坐標為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點P的坐標為(,3)或(1,1).故選:D.【考點】本題考查了一次函數(shù)圖象上點的坐標特征以及解一元二次方程,利用一次函數(shù)圖象上點的坐標特征及,找出關(guān)于m的一元二次方程是解題的關(guān)鍵.4、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.5、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識是解題的關(guān)鍵.二、多選題1、ACD【解析】【分析】根據(jù)不共線三點確定一個圓即可判斷A,B,C選項,根據(jù)同圓或等圓中,相等的圓心角所對的弧相等即可判斷D選項【詳解】不共線三點確定一個圓,故A選項不正確,B選項正確;一個圓上可以找出無數(shù)個不共線的三個點,即可構(gòu)成無數(shù)個三角形,這些三角形都是這個圓的內(nèi)接三角形圓有無數(shù)個內(nèi)接三角形;故C選項不正確;同圓或等圓中,相等的圓心角所對的弧相等,故D選項不正確.故選ACD.【考點】本題考查了圓的內(nèi)接三角形的定義,不共線三點確定一個圓,同圓或等圓中,相等的圓心角所對的弧相等,理解圓的相關(guān)性質(zhì)是解題的關(guān)鍵.2、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.3、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).4、BD【解析】【分析】根據(jù)點坐標關(guān)于原點對稱、軸對稱的特點,求出對應點坐標即可.【詳解】點A(-2,3)關(guān)于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關(guān)于y軸對稱的點為(2,3),故B正確點A(-2,3)關(guān)于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標關(guān)于x,y軸對稱,關(guān)于原點中心對稱的特點,以及兩點間距離公式,熟悉對應知識點是解決本題的關(guān)鍵.5、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.三、填空題1、(-2,3)【分析】根據(jù)“關(guān)于原點對稱的點的坐標關(guān)系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關(guān)于原點的對稱點的坐標是(-2,3).故答案為:

(-2,3).【點睛】本題主要考查點關(guān)于原點對稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點對稱點的坐標的關(guān)系.2、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當半徑為2時,直線l與圓O的的位置關(guān)系是相切,當半徑為3時,直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.3、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點性質(zhì)進行角度求解,熟練掌握,即可解題.4、【解析】【分析】由于最高次項前面的系數(shù)不確定,所以進行分類討論:①當時,直接進行求解;②當時,方程為一元二次方程,利用根的判別式,確定k的取值范圍,最后綜合①②即可求出滿足題意的k的取值范圍.【詳解】解:①當時,方程化為:,解得:,符合題意;②當時,∵方程有實數(shù)根,∴,即,解得:,∴且;綜上所述,當時,方程有實數(shù)根,故答案為:.【考點】題目主要考查方程的解的情況,包括一元一次方程及一元二次方程的求解,分情況討論方程的解是解題關(guān)鍵.5、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握圓周角定理.四、簡答題1、(1)直線x=1;(2);;(3)或【解析】【分析】(1)利用對稱軸公式計算即可;(2)構(gòu)建方程求出a的值即可解決問題;(3)先求出直線MN的解析式,然后設(shè)點的坐標為,過點作軸的垂線交直線于點,得到PQ的長度,根據(jù)三角形的面積公式,即可求出答案.【詳解】解:(1)∵二次函數(shù)(),∴該二次函數(shù)圖象的對稱軸是直線:;(2)∵該二次函數(shù)的圖象開口向上,對稱軸為直線,,∴當時,取得最大值,即,∴,得:,∴該二次函數(shù)的表達式為:,即點的坐標為.(3)設(shè)直線的解析式為,則,解得:,∴設(shè)直線的解析式為:,設(shè)點的坐標為,過點作軸的垂線交直線于點,如圖則點的坐標是,∴,∴,解得:,,∴點的坐標是或.【考點】本題考查二次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),函數(shù)的最值問題等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、(1);(2)【解析】【分析】(1)首先求出點B、C的坐標,然后利用待定系數(shù)法求出拋物線的解析式;(2)如圖,過點C作直線CD⊥y軸交拋物線于點D,過點D作DE⊥x軸于點E,連接BD,構(gòu)造Rt△DEB,欲求銳角三角函數(shù)定義tan∠BDE=,先求線段BE,DE的長度即可.【詳解】(1)解:∵直線經(jīng)過、兩點,易得點,,代入拋物線中,得解之得∴拋物線的解析式為.(2)解:如圖,過點作直線軸交拋物線于點,過點作軸于點,連接.∵拋物線的對稱軸為,點為,∴點為,從而得,.∵點為∴,在中,,∴.【考點】本題考查了拋物線與x軸的交點坐標,二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)以及三角函數(shù)等知識點,解題時,注意輔助線的作法.五、解答題1、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設(shè)⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結(jié)果;(2)根據(jù)切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以O(shè)P為邊放在右側(cè),圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據(jù)“定弦對定角”作F點的軌跡,根據(jù)切線性質(zhì),過點F作AB的垂線,再根據(jù)直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設(shè)⊙O的半徑為r,連接OE,OF,∵⊙O內(nèi)切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設(shè)△ABC的內(nèi)切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內(nèi)切圓性質(zhì)、切線長定理、勾股定理、矩形的判定與性質(zhì)、尺規(guī)作圖-作垂線,熟練掌握相關(guān)知識的聯(lián)系與運用是解答的關(guān)鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論