綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練試卷(附答案詳解)_第1頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練試卷(附答案詳解)_第2頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練試卷(附答案詳解)_第3頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練試卷(附答案詳解)_第4頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練試卷(附答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形2、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、如圖,已知菱形ABCD的對(duì)角線AC,BD的長(zhǎng)分別為6,8,AE⊥BC,垂足為點(diǎn)E,則AE的長(zhǎng)是()A.5 B.2 C. D.4、在△ABC中,AD是角平分線,點(diǎn)E、F分別是線段AC、CD的中點(diǎn),若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.5、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC6、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.137、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:18、將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點(diǎn)B、D折疊后的對(duì)應(yīng)點(diǎn)分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°9、若一個(gè)直角三角形的周長(zhǎng)為,斜邊上的中線長(zhǎng)為1,則此直角三角形的面積為()A. B. C. D.10、已知,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),點(diǎn)D為線段BC上一動(dòng)點(diǎn),將△OCD沿OD翻折,使點(diǎn)C落到點(diǎn)E處.當(dāng)B,E兩點(diǎn)之間距離最短時(shí),點(diǎn)D的坐標(biāo)為_(kāi)___.2、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為_(kāi)_________cm.3、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_(kāi)__.4、如圖中,分別是由個(gè)、個(gè)、個(gè)正方形連接成的圖形,在圖中,;在圖中,;通過(guò)以上計(jì)算,請(qǐng)寫(xiě)出圖中______(用含的式子表示)5、已知正方形ABCD的一條對(duì)角線長(zhǎng)為2,則它的面積是______.6、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對(duì)應(yīng)線段FG經(jīng)過(guò)點(diǎn)C,若FG⊥CD,CG=4,則EF的長(zhǎng)度為_(kāi)____.7、已知長(zhǎng)方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動(dòng)點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是______________________.8、如圖,菱形ABCD的兩條對(duì)角線長(zhǎng)分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為_(kāi)_.9、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長(zhǎng)為_(kāi)_________.10、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動(dòng),如圖所示,AD=2,A點(diǎn)沿墻往下滑動(dòng)到O點(diǎn)的過(guò)程中,正方形的中心點(diǎn)M到O的最小值是______.三、解答題(5小題,每小題6分,共計(jì)30分)1、(1)如圖a,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,過(guò)點(diǎn)D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說(shuō)明理由.

(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應(yīng)變?yōu)槭裁矗空f(shuō)明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫危Y(jié)論又應(yīng)變?yōu)槭裁??說(shuō)明理由.2、如圖,在Rt△ABC中,∠ACB=90°.

(1)作AB的垂直平分線l,交AB于點(diǎn)D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點(diǎn)E,F(xiàn)(尺規(guī)作圖,不寫(xiě)作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.3、如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E,CD=5,DB=13,求BE的長(zhǎng).

4、如圖,的對(duì)角線與相交于點(diǎn)O,過(guò)點(diǎn)B作BPAC,過(guò)點(diǎn)C作CPBD,與相交于點(diǎn)P.

(1)試判斷四邊形的形狀,并說(shuō)明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿(mǎn)足的條件是_________(填上一個(gè)即可).5、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫(huà)出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.-參考答案-一、單選題1、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運(yùn)用三角形的中位線的性質(zhì)解決中點(diǎn)四邊形問(wèn)題是解本題的關(guān)鍵.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長(zhǎng),在Rt△BOC中求出BC,利用菱形面積等于對(duì)角線乘積的一半,也等于BC×AE,可得出AE的長(zhǎng)度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點(diǎn)睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對(duì)角線互相垂直且平分.4、B【解析】【分析】過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,可求出,,再由點(diǎn)E、F分別是線段AC、CD的中點(diǎn),可得出,進(jìn)而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,∴,∴,,∵點(diǎn)E、F分別是線段AC、CD的中點(diǎn),∴,∴,∵,∴,∴,過(guò)點(diǎn)D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點(diǎn)睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.5、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).8、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點(diǎn)睛】本題通過(guò)折疊變換考查學(xué)生的邏輯思維能力,解決此類(lèi)問(wèn)題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.9、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長(zhǎng)為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.10、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對(duì)選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說(shuō)明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說(shuō)明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說(shuō)明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯(cuò)誤.D、③可以說(shuō)明四邊形是平行四邊形,再由②可得:對(duì)角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類(lèi)四邊形的判定條件,是解決本題的關(guān)鍵.二、填空題1、(3,6)【解析】【分析】連接OB,證得當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,再利用勾股定理構(gòu)造方程求解即可.【詳解】解:連接OB,∵點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,此時(shí)BE=4,∠DEB=90°,設(shè)CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點(diǎn)D的坐標(biāo)為(3,6).【點(diǎn)睛】本題考查了矩形的判定和性質(zhì),坐標(biāo)與圖形,折疊的性質(zhì),勾股定理,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,2、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).3、8【解析】【分析】根據(jù)正方形的軸對(duì)稱(chēng)的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進(jìn)行計(jì)算即可得解.【詳解】解:×4×4=8.故答案為:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱(chēng)的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問(wèn)題.4、90n【解析】【分析】連接各小正方形的對(duì)角線,由圖1中四邊形內(nèi)角和定理化簡(jiǎn)可得:;由圖2中四邊形內(nèi)角和定理化簡(jiǎn)可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對(duì)角線,如下圖:圖中,,即,圖中,,即,,以此類(lèi)推,,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.5、6【解析】【分析】正方形的面積:邊長(zhǎng)的平方或兩條對(duì)角線之積的一半,根據(jù)公式直接計(jì)算即可.【詳解】解:正方形ABCD的一條對(duì)角線長(zhǎng)為2,故答案為:【點(diǎn)睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對(duì)角線之積的一半”是解題的關(guān)鍵.6、【解析】【分析】延長(zhǎng)CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長(zhǎng)度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長(zhǎng)CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.7、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過(guò)點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而B(niǎo)N=2,再由勾股定理可得BP的長(zhǎng);③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而B(niǎo)N=8,再由勾股定理可得BP的長(zhǎng);即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時(shí),分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過(guò)點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長(zhǎng)為5②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類(lèi)討論等知識(shí),熟練掌握矩形的性質(zhì),進(jìn)行分類(lèi)討論是解題的關(guān)鍵.8、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長(zhǎng),由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點(diǎn)睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.9、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長(zhǎng),從而可求得菱形的周長(zhǎng).【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長(zhǎng)為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長(zhǎng)等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.10、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長(zhǎng),然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時(shí),即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識(shí),正確作出輔助線是解答本題的關(guān)鍵.三、解答題1、(1)四邊形CODP是菱形,理由見(jiàn)解析;(2)四邊形CODP是矩形,理由見(jiàn)解析;(3)四邊形CODP是正方形,理由見(jiàn)解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質(zhì)可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質(zhì)可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質(zhì)可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)與判定,菱形的性質(zhì)與判定,正方形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握特殊平行四邊形的性質(zhì)與判定條件.2、(1)見(jiàn)解析(2)見(jiàn)解析【分析】(1)利用垂直平分線和角平分線的尺規(guī)作圖法,進(jìn)行作圖即可.(2)利用直角三角形斜邊中線性質(zhì),以及角平分線的性質(zhì)直接證明與都是,最后加上,即可證明結(jié)論.【詳解】(1)答案如下圖所示:

分別以A、B兩點(diǎn)為圓心,以大于長(zhǎng)為半徑畫(huà)弧,連接弧的交點(diǎn)的直線即為垂直平分線l,其與AB的交點(diǎn)為D,以點(diǎn)D為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交DA于點(diǎn)M,交CD于點(diǎn)N,交BD于點(diǎn)T,然后分別以點(diǎn)M,N為圓心,大于為半徑畫(huà)弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交AC于點(diǎn)E,同理分別以點(diǎn)T,N為圓心,大于為半徑畫(huà)弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交BC于點(diǎn)F.(2)證明:點(diǎn)是AB與其垂直平分線l的交點(diǎn),點(diǎn)是AB的中點(diǎn),是Rt△ABC上的斜邊的中線,,DE、DF分別是ADC,∠BDC的角平分線,,,,,,,,在四邊形CEDF中,,四邊形CEDF是矩形.【點(diǎn)睛】本題主要是考查了尺規(guī)作圖、直角三角形斜邊中線性質(zhì)以及矩形的判定,熟練利用直角三角形斜邊中線性質(zhì),找到三角形全等的判定條件,并且選擇合適的矩形判定條件,是解決本題的關(guān)鍵.3、【分析】由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE,依據(jù)勾股定理求得BC的長(zhǎng),由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長(zhǎng),從而得到BE的長(zhǎng).【詳解】解:∵四邊形ABCD為矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性質(zhì)可知∠F=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論