難點詳解人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析試題(解析版)_第1頁
難點詳解人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析試題(解析版)_第2頁
難點詳解人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析試題(解析版)_第3頁
難點詳解人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析試題(解析版)_第4頁
難點詳解人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析試題(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列圖案是幾家銀行的標(biāo)志,其中是軸對稱圖形的有()A.1個 B.2個 C.3個 D.4個2、如圖,△ABC中,AB=AC,DE是AB的垂直平分線交AB于點E,交AC于點D,連接BD;若BD⊥AC,則∠CBD的度數(shù)是(

)A.22° B.22.5° C.24° D.24.5°3、如圖所示,已知△ABC(AC<AB<BC),用尺規(guī)在線段BC上確定一點P,使得PA+PC=BC,則符合要求的作圖痕跡是()A. B. C. D.4、已知點P(2021,﹣2021),則點P關(guān)于x軸對稱的點的坐標(biāo)是(

)A.(﹣2021,2021) B.(﹣2021,﹣2021)C.(2021,2021) D.(2021,﹣2021)5、如圖,中,∠BCA=90°,∠ABC=22.5°,將沿直線BC折疊,得到點A的對稱點A′,連接BA′,過點A作AH⊥BA′于H,AH與BC交于點E.下列結(jié)論一定正確的是(

)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、等腰三角形的頂角與其一個底角的度數(shù)的比值稱為這個等腰三角形的“特征值”﹒若等腰中,,則它的特征值_________________.2、如圖,在中,,D、E是內(nèi)兩點.AD平分,,若,則______cm.3、已知,點P為內(nèi)一點,點A為OM上一點,點B為ON上一點,當(dāng)?shù)闹荛L取最小值時,的度數(shù)為_______________.4、如圖,在等邊三角形ABC中,點D是邊BC的中點,則∠BAD=_________.5、如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.三、解答題(5小題,每小題10分,共計50分)1、在△ABC中,DE垂直平分AB,分別交AB、BC于點D、E,MN垂直平分AC,分別交AC,BC于點M、N.(1)如圖1,若∠BAC=112°,求∠EAN的度數(shù);(2)如圖2,若∠BAC=82°,求∠EAN的度數(shù);(3)若∠BAC=α(α≠90°),直接寫出用α表示∠EAN大小的代數(shù)式.2、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;

(2)如圖②,,當(dāng)周長最小時,求的度數(shù);(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.3、如圖,在中,,;點在上,.連接并延長交于.(1)求證:;(2)求證:;(3)若,與有什么數(shù)量關(guān)系?請說明理由.4、已知,ABC三條邊的長分別為.(1)若,當(dāng)ABC為等腰三角形,求ABC的周長.(2)化簡:.5、如圖,△是等邊三角形,在直線上,.求證:.-參考答案-一、單選題1、C【解析】【分析】根據(jù)軸對稱圖形的概念“如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合的圖形”可直接進(jìn)行排除選項.【詳解】解:都是軸對稱圖形,而不是軸對稱圖形,所以是軸對稱圖形的有3個;故選C.【考點】本題主要考查軸對稱圖形的識別,熟練掌握軸對稱圖形的概念是解題的關(guān)鍵.2、B【解析】【分析】先利用線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)求得∠A、∠ABD、∠ABC,最后利用三角形內(nèi)角和定理求解即可.【詳解】解:∵BD⊥AC,DE是AB的垂直平分線,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故選B.【考點】本題主要考查了線段垂直平分線、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識點,明確題意、靈活應(yīng)用相關(guān)知識點成為解答本題的關(guān)鍵.3、C【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)可得,作AB的垂直平分線,交BC于點P,則PB+PC=BC,進(jìn)而可以判斷.【詳解】解:作AB垂直平分線交BC于點P,連接PA,則PA=PB,所以PA+PC=PB+PC=BC.所以符合要求的作圖痕跡是C.故選:C.【考點】本題考查了作圖-復(fù)雜作圖,解決本題的關(guān)鍵是掌握線段垂直平分線的性質(zhì).4、C【解析】【分析】直接利用關(guān)于x軸對稱點的性質(zhì):橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)進(jìn)而得出答案.【詳解】解:∵點P(2021,﹣2021),∴點P關(guān)于x軸對稱的點的坐標(biāo)是(2021,2021).故選:C.【考點】此題考查關(guān)于x軸、y軸對稱的點的坐標(biāo),熟記關(guān)于軸對稱坐標(biāo)的特點是解題的關(guān)鍵.5、B【解析】【分析】證明,即可得出正確答案.【詳解】證明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直線BC折疊,得到點A的對稱點A′,連接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故選項正確,故選;.【考點】本題考查了折疊、等腰三角形、等腰直角三角形、三角形全等,解決本題的關(guān)鍵是證明全等,得出線段.二、填空題1、或【解析】【分析】分∠A為頂角及∠A為底角兩種情況考慮,當(dāng)∠A為頂角時,利用三角形內(nèi)角和定理可求出底角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值;當(dāng)∠A為底角時,利用三角形內(nèi)角和定理可求出頂角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值.【詳解】當(dāng)為頂角時,則底角度數(shù)為,則;當(dāng)為底角時,則頂角度數(shù)為,;故答案為:或.【考點】本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理,分∠A為頂角及∠A為底角兩種情況求出“特征值”k是解題的關(guān)鍵.2、10【解析】【分析】過點E作,垂足為F,延長AD到H,交BC于點H,過點D作,垂足為G,由直角三角形中所對的直角邊是斜邊的一半可知,,然后由等腰三角形三線合一可知,,然后再證明四邊形DGFH是矩形,從而得到,最后根據(jù)計算即可.【詳解】解;過點E作,垂足為F,延長AD到H,交BC于點H,過點D作,垂足為G.,,,,,,.又,,,AD平分,,且.,,,四邊形DGFH是矩形...故答案為:10.【考點】本題主要考查的是等腰三角形的性質(zhì),含直角三角形的性質(zhì)以及矩形的性質(zhì)和判定,根據(jù)題意構(gòu)造含的直角三角形是解題的關(guān)鍵.3、80°【解析】【分析】如圖,分別作P關(guān)于OM、ON的對稱點,然后連接兩個對稱點即可得到A、B兩點,由此即可得到△PAB的周長取最小值時的情況,并且求出∠APB度數(shù).【詳解】解:如圖,分別作P關(guān)于OM、ON的對稱點P1、P2,然后連接兩個對稱點即可得到A、B兩點,∴△PAB即為所求的三角形,根據(jù)對稱性知道:∠APO=∠AP1O,∠BPO=∠BP2O,還根據(jù)對稱性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案為80°.4、30°【解析】【分析】根據(jù)等腰三角形的三線合一的性質(zhì)和等邊三角形三個內(nèi)角相等的性質(zhì)填空.【詳解】∵△ABC是等邊三角形,∴又點D是邊BC的中點,∴故答案是:30°.【考點】考查了等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.等邊三角形是軸對稱圖形,它有三條對稱軸;它的任意一角的平分線都垂直平分對邊,三邊的垂直平分線是對稱軸.5、45°【解析】【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.三、解答題1、(1)∠EAN=44°;(2)∠EAN=16°;(3)當(dāng)0°<α<90°時,∠EAN=180°﹣2α;當(dāng)180°>α>90°時,∠EAN=2α﹣180°.【解析】【分析】(1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,再根據(jù)等邊對等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內(nèi)角和定理求出∠B+∠C,再根據(jù)∠EAN=∠BAC﹣(∠BAE+∠CAN)代入數(shù)據(jù)進(jìn)行計算即可得解;(2)同(1)的思路,最后根據(jù)∠EAN=∠BAE+∠CAN﹣∠BAC代入數(shù)據(jù)進(jìn)行計算即可得解;(3)根據(jù)前兩問的求解方法,分0°<α<90°與180°>α>90°兩種情況解答.【詳解】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=98°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;(3)當(dāng)0°<α<90°時,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠∴∠當(dāng)180°>α>90°時,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠所以,當(dāng)0°<α<90°時,∠EAN=180°﹣2α;當(dāng)180°>α>90°時,∠EAN=2α﹣180°.【考點】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),等邊對等角的性質(zhì),三角形的內(nèi)角和定理,整體思想的利用是解題的關(guān)鍵.2、(1)見解析;(2);(3).【解析】【分析】(1)延長到點G,使,連接,首先證明,則有,,然后利用角度之間的關(guān)系得出,進(jìn)而可證明,則,則結(jié)論可證;(2)分別作點A關(guān)于和的對稱點,,連接,交于點,交于點,根據(jù)軸對稱的性質(zhì)有,,當(dāng)點、、、在同一條直線上時,即為周長的最小值,然后利用求解即可;(3)旋轉(zhuǎn)至的位置,首先證明,則有,最后利用求解即可.【詳解】(1)證明:如解圖①,延長到點,使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點A關(guān)于和的對稱點,,連接,交于點,交于點.由對稱的性質(zhì)可得,,此時的周長為.當(dāng)點、、、在同一條直線上時,即為周長的最小值.,.,,;(3)解:如解圖,旋轉(zhuǎn)至的位置,,,.在和中,...【考點】本題主要考查全等三角形的判定及性質(zhì),軸對稱的性質(zhì),掌握全等三角形的判定及性質(zhì)是解題的關(guān)鍵.3、(1)見解析;(2)見解析;(3)若,則,理由見解析【解析】【分析】(1)首先利用SAS證明,即可得出結(jié)論;(2)利用全等三角形的性質(zhì)和等量代換即可得出,從而有,則結(jié)論可證;(3)直接根據(jù)等腰三角形三線合一得出,又因為,則結(jié)論可證.【詳解】解答:(1)證明:,.在和中,,,;(2)證明:∵,.,,即,,;

(3)若,則.理由如下:,∴BE是中線,

.,.【考點】本題主要考查全等三角形的判定及性質(zhì),等腰三角形的性質(zhì),掌握全等三角形的判定及性質(zhì)和等腰三角形的性質(zhì)是解題的關(guān)鍵.4、(1)△ABC的周長為10;(2).【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長;(2)根據(jù)三角形三邊滿足的條件是,兩邊和大于第三邊,兩邊的差小于第三邊,根據(jù)此來確定絕對值內(nèi)的式子的正負(fù),從而化簡計算即可.【詳解】解:(1)∵,∴a-2=0,b-4=0,∴a=2,b=4,∵△ABC為等腰三角形,當(dāng)2為腰時,則三邊為2,2,4,而2+2<4,不能組成三角形,舍去;當(dāng)2為底時,則三邊為2,4,4,而2+4>4,能組成三角形,∴△ABC的周長為2+4+4=10;(2)∵△ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論