解析卷-人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試試卷(含答案詳解版)_第1頁
解析卷-人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試試卷(含答案詳解版)_第2頁
解析卷-人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試試卷(含答案詳解版)_第3頁
解析卷-人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試試卷(含答案詳解版)_第4頁
解析卷-人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版9年級數(shù)學上冊【二次函數(shù)】綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、一次函數(shù)與二次函數(shù)在同一坐標系中的圖象大致為()A. B.C. D.2、二次函數(shù)的圖象的對稱軸是(

)A. B. C. D.3、如圖,拋物線y=x2+7x﹣與x軸交于點A,B,把拋物線在x軸及共上方的部分記作C1將C1向左平移得到C2,C2與x軸交于點B,D,若直線y=x+m與C1,C2共3個不同的交點,則m的取值范是(

)A. B. C. D.4、已知拋物線P:,將拋物線P繞原點旋轉(zhuǎn)180°得到拋物線,當時,在拋物線上任取一點M,設(shè)點M的縱坐標為t,若,則a的取值范圍是(

)A. B. C. D.5、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當時,y的值隨x值的增大而增大6、已知拋物線y=ax2+bx+c(a<0)過A(-3,0),B(1,0),C(-5,y1),D(5,y2)四點,則y1與y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定7、為了美觀,在加工太陽鏡時將下半部分輪廓制作成拋物線的形狀(如圖所示),對應的兩條拋物線關(guān)于軸對稱,軸,,最低點在軸上,高,,則右輪廓所在拋物線的解析式為(

)A. B. C. D.8、把函數(shù)的圖象向右平移1個單位長度,平移后圖象的函數(shù)解析式為(

)A. B.C. D.9、拋物線y=3(x﹣2)2+5的頂點坐標是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)10、如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),頂點坐標為(1,m),與y軸的交點在(0,﹣4),(0,﹣3)之間(包含端點),下列結(jié)論:①abc>0;②4ac-b2>0;③ac<0;④1≤a;⑤關(guān)于x的方程ax2+bx+c+2﹣m=0沒有實數(shù)根.其中正確的結(jié)論有(

)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減?。虎轪+b+c>0中,正確的有______.(只填序號)2、已知函數(shù)y的圖象如圖所示,若直線y=kx﹣3與該圖象有公共點,則k的最大值與最小值的和為_____.3、當﹣1≤x≤3時,二次函數(shù)y=x2﹣4x+5有最大值m,則m=_____.4、拋物線是二次函數(shù),則m=___.5、寫出一個滿足“當時,隨增大而減小”的二次函數(shù)解析式______.6、定義:為二次函數(shù)()的特征數(shù),下面給出特征數(shù)為的二次函數(shù)的一些結(jié)論:①當時,函數(shù)圖象的對稱軸是軸;②當時,函數(shù)圖象過原點;③當時,函數(shù)有最小值;④如果,當時,隨的增大而減小,其中所有正確結(jié)論的序號是______.7、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.8、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.9、已知四個二次函數(shù)的圖象如圖所示,那么a1,a2,a3,a4的大小關(guān)系是_____.(請用“>”連接排序)10、已知函數(shù)y=(2﹣k)x2+kx+1是二次函數(shù),則k滿足__.三、解答題(5小題,每小題6分,共計30分)1、今年以來,我市接待的游客人數(shù)逐月增加,據(jù)統(tǒng)計,游玩某景區(qū)的游客人數(shù)三月份為4萬人,五月份為5.76萬人.(1)求四月和五月這兩個月中,該景區(qū)游客人數(shù)平均每月增長百分之幾;(2)若該景區(qū)僅有兩個景點,售票處出示的三種購票方式如表所示:購票方式甲乙丙可游玩景點和門票價格100元/人80元/人160元/人據(jù)預測,六月份選擇甲、乙、丙三種購票方式的人數(shù)分別有2萬、3萬和2萬.并且當甲、乙兩種門票價格不變時,丙種門票價格每下降1元,將有600人原計劃購買甲種門票的游客和400人原計劃購買乙種門票的游客改為購買丙種門票.①若丙種門票價格下降10元,求景區(qū)六月份的門票總收入;②問:將丙種門票價格下降多少元時,景區(qū)六月份的門票總收入有最大值?最大值是多少萬元?2、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標分別為x1,x2,當x12+x22=10時,求k的值;(3)當﹣4<x≤m時,y有最大值,求m的值.3、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.4、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;5、某水果商店銷售一種進價為40元/千克的優(yōu)質(zhì)水果,若售價為50元/千克,則一個月可售出500千克;若售價在50元/千克的基礎(chǔ)上每漲價1元,則月銷售量就減少10千克.(1)當售價為55元/千克時,每月銷售水果多少千克?(2)當月利潤為8750元時,每千克水果售價為多少元?(3)當每千克水果售價為多少元時,獲得的月利潤最大?-參考答案-一、單選題1、A【解析】【分析】由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D可能正確,B,C不符合舍去,然后對A,D選項,根據(jù)二次函數(shù)的圖象確定a和b的符號,然后根據(jù)一次函數(shù)的性質(zhì)看一次函數(shù)圖象的位置是否正確,若正確,說明它們可在同一坐標系內(nèi)存在.【詳解】解:由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D符合,B,C不符合舍去,A、由二次函數(shù)y=ax2+bx的圖象得a>0,再根據(jù)>0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第一、三、四象限,所以A選項正確;D、由二次函數(shù)y=ax2+bx的圖象得a<0,再根據(jù)<0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第二、三、四象限,所以D選項錯誤.故選:A.【考點】本題考查了二次函數(shù)的圖象:二次函數(shù)的圖象為拋物線,可能利用列表、描點、連線畫二次函數(shù)的圖象.也考查了二次函數(shù)圖象與系數(shù)的關(guān)系.2、A【解析】【分析】將二次函數(shù)寫成頂點式,進而可得對稱軸.【詳解】解:.二次函數(shù)的圖象的對稱軸是.故選A.【考點】本題考查了二次函數(shù)的性質(zhì),將一般式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.3、A【解析】【分析】首先求出點和點的坐標,然后求出解析式,分別求出直線與拋物線相切時的值以及直線過點時的值,結(jié)合圖形即可得到答案.【詳解】解:將y=0代入,得:,解得:,,拋物線與軸交于點、,,,拋物線向左平移4個單位長度,∵,平移后解析式,如圖,當直線過點,有2個交點,,解得:,當直線與拋物線相切時,有2個交點,,整理得:,相切,,解得:,若直線與、共有3個不同的交點,,故選:A.【考點】本題主要考查拋物線與軸交點以及二次函數(shù)圖象與幾何變換的知識,解答本題的關(guān)鍵是正確地畫出圖形,利用數(shù)形結(jié)合進行解題,此題有一定的難度.4、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當x=1時,,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點旋轉(zhuǎn)180°得到拋物線,∴拋物線P與拋物線關(guān)于原點對稱,設(shè)點(x,y)在拋物線P’上,則點(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當時,在拋物線上任取一點M,設(shè)點M的縱坐標為t,若,即令,∴,解得:或,設(shè),∵開口向下,且與x軸的兩個交點為(0,0),(4a,0),即當時,要恒成立,此時,∴當x=1時,即可,得:,解得:,又∵∴故選A【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).5、C【解析】【分析】利用表中的數(shù)據(jù),求得二次函數(shù)的解析式,再配成頂點式,根據(jù)二次函數(shù)的性質(zhì)逐一分析即可判斷.【詳解】解:設(shè)二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標為(,),∴當時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質(zhì),利用二次函數(shù)的性質(zhì)解答是解題關(guān)鍵.6、A【解析】【分析】根據(jù)二次函數(shù)圖象的對稱軸位置以及開口方向,可得C(-5,y1)距對稱軸的距離比D(5,y2)距對稱軸的距離小,進而即可得到答案.【詳解】∵拋物線y=ax2+bx+c(a<0)過A(-3,0),B(1,0),∴拋物線的對稱軸是:直線x=-1,且開口向下,∵C(-5,y1)距對稱軸的距離比D(5,y2)距對稱軸的距離小,∴y1>y2,故選A.【考點】本題主要考查二次函數(shù)的性質(zhì),掌握用拋物線的軸對稱性比較二次函數(shù)值的大小,是解題的關(guān)鍵.7、B【解析】【分析】利用B、D關(guān)于y軸對稱,CH=1cm,BD=2cm可得到D點坐標為(1,1),由AB=4cm,最低點C在x軸上,則AB關(guān)于直線CH對稱,可得到左邊拋物線的頂點C的坐標為(-3,0),于是得到右邊拋物線的頂點C的坐標為(3,0),然后設(shè)頂點式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對稱,∴D點坐標為(1,1),∵AB∥x軸,AB=4cm,最低點C在x軸上,∴AB關(guān)于直線CH對稱,∴左邊拋物線的頂點C的坐標為(-3,0),∴右邊拋物線的頂點F的坐標為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點】本題考查了二次函數(shù)的應用:利用實際問題中的數(shù)量關(guān)系與直角坐標系中線段對應起來,再確定某些點的坐標,然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.8、C【解析】【分析】拋物線在平移時開口方向不變,a不變,根據(jù)圖象平移的口訣“左加右減、上加下減”即可解答.【詳解】把函數(shù)的圖象向右平移1個單位長度,平移后圖象的函數(shù)解析式為,故選:C.【考點】本題考查了二次函數(shù)圖象與幾何變換,解答的重點在于熟練掌握圖象平移時函數(shù)表達式的變化特點.9、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點坐標是(h,k)進行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點坐標是(2,5).故選C.【考點】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.10、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:①∵拋物線y=ax2+bx+c(a≠0)的圖象開口向上,∴a>0∵拋物線y=ax2+bx+c(a≠0)的對稱軸在y軸的右側(cè),∴∴又∵拋物線y=ax2+bx+c(a≠0)的圖象交y軸的負半軸,∴∴,故①正確,符合題意;②∵拋物線y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點,∴,即,故②錯誤,不符合題意;③∵拋物線的頂點坐標為(1,m),與x軸的一個交點為A(-1,0)∴對稱軸為x=1∴拋物線與x軸的另一個交點為(3,0)∴當x=3時,y=,∴ac=0,故③錯誤,不符合題意;④當x=-1時,y=a-b+c=0,則c=-a+b,由-4≤c≤-3,得-4≤-a+b≤-3,圖象的對稱軸為x=1,故b=-2a,得-4≤-3a≤-3,故1≤a≤正確,符合題意;⑤y=ax2+bx+c的頂點為(1,m),即當x=1時y有最小值m.而y=m-2和y=ax2+bx+c無交點,即方程ax2+bx+c=m-2無解,∴關(guān)于x的方程ax2+bx+c+2-m=0沒有實數(shù)根,故⑤正確,符合題意.故選:C.【考點】本題考查的是拋物線與x軸的交點,主要考查函數(shù)圖象上點的坐標特征,要求學生非常熟悉函數(shù)與坐標軸的交點、頂點等點坐標的求法,及這些點代表的意義及函數(shù)特征.二、填空題1、①②③⑤【解析】【分析】根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥.【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=,∴abc>0,4ac<b2,當時,y隨x的增大而減?。盛佗冖菡_,∵,∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤.故答案為:①②③⑤.【考點】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.2、17【解析】【分析】根據(jù)題意可知,當直線經(jīng)過點(1,12)時,直線y=kx-3與該圖象有公共點;當直線與拋物線只有一個交點時,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它們的和為17.【詳解】解:當直線經(jīng)過點(1,12)時,12=k-3,解得k=15;當直線與拋物線只有一個交點時,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值與最小值的和為15+2=17.故答案為:17.【考點】本題考查分段函數(shù)的圖象與性質(zhì),一次函數(shù)圖象上點的坐標特征,結(jié)合圖象求出k的最大值和最小值是解題的關(guān)鍵.3、10【解析】【分析】根據(jù)題目中的函數(shù)解析式和二次函數(shù)的性質(zhì),可以求得m的值,本題得以解決.【詳解】∵二次函數(shù)y=x2﹣4x+5=(x﹣2)2+1,∴該函數(shù)開口向上,對稱軸為x=2,∵當﹣1≤x≤3時,二次函數(shù)y=x2﹣4x+5有最大值m,∴當x=﹣1時,該函數(shù)取得最大值,此時m=(﹣1﹣2)2+1=10,故答案為:10.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.4、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點】本題主要考查了二次函數(shù)的定義,解題的關(guān)鍵在于能夠熟知二次函數(shù)的定義.5、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).6、①②③.【解析】【分析】利用二次函數(shù)的性質(zhì)根據(jù)特征數(shù),以及的取值,逐一代入函數(shù)關(guān)系式,然判斷后即可確定正確的答案.【詳解】解:當時,把代入,可得特征數(shù)為∴,,,∴函數(shù)解析式為,函數(shù)圖象的對稱軸是軸,故①正確;當時,把代入,可得特征數(shù)為∴,,,∴函數(shù)解析式為,當時,,函數(shù)圖象過原點,故②正確;函數(shù)當時,函數(shù)圖像開口向上,有最小值,故③正確;當時,函數(shù)圖像開口向下,對稱軸為:∴時,可能在函數(shù)對稱軸的左側(cè),也可能在對稱軸的右側(cè),故不能判斷其增減性,故④錯誤;綜上所述,正確的是①②③,故答案是:①②③.【考點】本題考查了二次函數(shù)的圖像與性質(zhì),二次函數(shù)的對稱軸等知識點,牢記二次函數(shù)的基本性質(zhì)是解題的關(guān)鍵.7、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標特征及求代數(shù)式的值,解題的關(guān)鍵是將點(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.8、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.9、a1>a2>a3>a4【解析】【分析】直接利用二次函數(shù)的圖象開口大小與a的關(guān)系進而得出答案.【詳解】解:如圖所示:①y=a1x2的開口小于②y=a2x2的開口,則a1>a2>0,③y=a3x2的開口大于④y=a4x2的開口,開口向下,則a4<a3<0,故a1>a2>a3>a4.故答案是:a1>a2>a3>a4.【考點】考查了二次函數(shù)的圖象,正確記憶開口大小與a的關(guān)系是解題關(guān)鍵.10、k≠2【解析】【分析】利用二次函數(shù)定義可得2﹣k≠0,再解不等式即可.【詳解】解:由題意得:2﹣k≠0,解得:k≠2,故答案為:k≠2.【考點】本題主要考查了二次函數(shù)的定義,準確分析計算是解題的關(guān)鍵.三、解答題1、(1)20%;(2)①798萬元,②當丙種門票價格降低24元時,景區(qū)六月份的門票總收入有最大值,為817.6萬元【解析】【分析】(1)設(shè)四月和五月這兩個月中,該景區(qū)游客人數(shù)的月平均增長率為,則四月份的游客為人,五月份的游客為人,再列方程,解方程可得答案;(2)①分別計算購買甲,乙,丙種門票的人數(shù),再計算門票收入即可得到答案;②設(shè)丙種門票價格降低元,景區(qū)六月份的門票總收入為萬元,再列出與的二次函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解最大利潤即可得到答案.【詳解】解:(1)設(shè)四月和五月這兩個月中,該景區(qū)游客人數(shù)的月平均增長率為,由題意,得解這個方程,得(舍去)答:四月和五月這兩個月中,該景區(qū)游客人數(shù)平均每月增長20%.(2)①由題意,丙種門票價格下降10元,得:購買丙種門票的人數(shù)增加:(萬人),購買甲種門票的人數(shù)為:(萬人),購買乙種門票的人數(shù)為:(萬人),所以:門票收入問;(萬元)答:景區(qū)六月份的門票總收入為798萬元.②設(shè)丙種門票價格降低元,景區(qū)六月份的門票總收入為萬元,由題意,得化簡,得,,∴當時,取最大值,為817.6萬元.答:當丙種門票價格降低24元時,景區(qū)六月份的門票總收入有最大值,為817.6萬元.【考點】本題考查的是一元二次方程的應用,二次函數(shù)的實際應用,掌握利用二次函數(shù)的性質(zhì)求解利潤的最大值是解題的關(guān)鍵.2、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對稱軸方程,分三種情況討論,當<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對稱軸為直線x=2,當m<2時,當x=m時,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當m≥2時,當x=2時,y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點坐標,一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.3、(1);(2)①1;②點C的坐標是【解析】【分析】(1)將兩點分別代入,得,解方程組即可;(2)①根據(jù)AB=4,斜邊上的高為2,Q的橫坐標為1,計算點C的橫坐標為-1,即到y(tǒng)軸的距離為1;②根據(jù)直線PQ的解析式,設(shè)點A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代數(shù)式表示點C的坐標,代入拋物線解析式求解即可.【詳解】解:(1)將兩點分別代入,得解得.所以拋物線的解析式是.(2)①如圖2,拋物線的對稱軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論