考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)試卷(含答案詳解)_第1頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)試卷(含答案詳解)_第2頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)試卷(含答案詳解)_第3頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)試卷(含答案詳解)_第4頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專題練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個2、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為()A. B. C. D.3、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.4、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④5、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.66、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.137、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為點B′,AB′與DC相交于點E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE8、如圖,正方形的面積為256,點F在上,點E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.159、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.610、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.2、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.3、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.4、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.5、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.6、如圖,在矩形ABCD中,BC=2,AB=x,點E在邊CD上,且CEx,將BCE沿BE折疊,若點C的對應(yīng)點落在矩形ABCD的邊上,則x的值為_______.7、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點P為BC邊上任意一點,若將紙片沿著DP折疊,使點C恰好落在線段EF的三等分點上,則BC的長等于_________cm.8、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).9、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)10、正方形ABCD的邊長為4,則圖中陰影部分的面積為_____.三、解答題(5小題,每小題6分,共計30分)1、閱讀探究小明遇到這樣一個問題:在中,已知,,的長分別為,,,求的面積.小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即的3個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法,(1)圖1中的面積為________.實踐應(yīng)用參考小明解決問題的方法,回答下列問題:(2)圖2是一個的正方形網(wǎng)格(每個小正方形的邊長為1).①利用構(gòu)圖法在答題卡的圖2中畫出三邊長分別為,,的格點.②的面積為________(寫出計算過程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為________(在圖4中構(gòu)圖并填空).2、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標(biāo);②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標(biāo);若不能,請說明理由.3、(1)如圖a,矩形ABCD的對角線AC、BD交于點O,過點D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.

(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應(yīng)變?yōu)槭裁??說明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結(jié)論又應(yīng)變?yōu)槭裁??說明理由.4、在平面直角坐標(biāo)系xOy中,點A(x,﹣m)在第四象限,A,B兩點關(guān)于x軸對稱,x=+n(n為常數(shù)),點C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點P為線段OD上一點,且∠PBD=45°,求點P的橫坐標(biāo).5、如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.

(1)在方格紙中畫出以AB為對角線的正方形AEBF,點E、F在小正方形的頂點上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點E到點B的距離為:.故選:C.【點睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.3、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.4、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.5、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.6、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.8、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計算CE,根據(jù)正方形ABCD的面積計算BC,根據(jù)勾股定理計算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因為Rt△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點睛】本題考查了正方形,等腰直角三角形面積的計算,考查了直角三角形中勾股定理的運用,本題中求證CF=CE是解題的關(guān)鍵.9、C【解析】【分析】先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對稱性可知PB=PD,則PE+PD=PE+BP.由兩點之間線段最短可知:當(dāng)點B、P、E在一條直線上時,PE+PD有最小值,最小值為BE的長.【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對稱.∴BP=DP.∴PE+PD=PE+BP.由兩點之間線段最短可知:當(dāng)點B、P、E在一條直線上時,PE+PD有最小值,最小值=BE=4.故選:C.【點睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對稱—最短路線問題,熟知“兩點之間,線段最短”是解答此題的關(guān)鍵.10、D【解析】【分析】根據(jù)正方形的判定定理進行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項不符合題意;D選項符合題意;故選:D.【點睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.二、填空題1、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).2、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.3、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.4、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.5、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.6、或【解析】【分析】分兩種情況進行解答,即當(dāng)點落在邊上和點落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進行計算即可.【詳解】解:如圖1,當(dāng)點落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.7、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點故答案為:或【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.8、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.9、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內(nèi)角和定理化簡可得:;由圖2中四邊形內(nèi)角和定理化簡可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.10、8【解析】【分析】正方形的對角線是它的一條對稱軸,對應(yīng)點到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進行計算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會于轉(zhuǎn)化的思想思考問題.三、解答題1、(1);(2)①作圖見詳解;②8;(3)在網(wǎng)格中作圖見詳解;31.【分析】(1)根據(jù)網(wǎng)格可直接用割補法求解三角形的面積;(2)①利用勾股定理畫出三邊長分別為、、,然后依次連接即可;②根據(jù)①中圖形,可直接利用割補法進行求解三角形的面積;(3)根據(jù)題意在網(wǎng)格中畫出圖形,然后在網(wǎng)格中作出,,進而可得,得出,進而利用割補法在網(wǎng)格中求解六邊形的面積即可.【詳解】解:(1)△ABC的面積為:,故答案為:;(2)①作圖如下(答案不唯一):②的面積為:,故答案為:8;(3)在網(wǎng)格中作出,,在與中,,∴,∴,,六邊形AQRDEF的面積=正方形PQAF的面積+正方形PRDE的面積+的面積,故答案為:31.【點睛】本題主要考查勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算,熟練掌握勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算是解題的關(guān)鍵.2、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.

【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時,;當(dāng)時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標(biāo)為(12,0),B點坐標(biāo)為(-8,0),C點坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時,同理可得,∴,∴M點的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;

②如圖3-3所示,當(dāng)OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時,∴此時M點與A點重合,∴M點的坐標(biāo)為(12,0);如圖3-5所示,當(dāng)OM=ME時,過點E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設(shè),則,∵,∴,解得,∴M點的坐標(biāo)為(,0);綜上所述,當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.【點睛】本題主要考查了坐標(biāo)與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.3、(1)四邊形CODP是菱形,理由見解析;(2)四邊形CODP是矩形,理由見解析;(3)四邊形CODP是正方形,理由見解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質(zhì)可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質(zhì)可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質(zhì)可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點睛】本題主要考查了矩形的性質(zhì)與判定,菱形的性質(zhì)與判定,正方形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握特殊平行四邊形的性質(zhì)與判定條件.4、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開方數(shù)是非負(fù)數(shù),求出m=3,判斷出A,B兩點坐標(biāo),可得結(jié)論;(2)①結(jié)論:OC=BD,OC∥BD.連接AB交x軸于點T.利用等腰三角形的三線合一的性質(zhì)得出OC=2CT,利用三角形中位線定理得出CT∥BD,BD=2CT,由此即可得;②連接AB交OC于點T,過點P作PH⊥OC于H.證明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出結(jié)論.【詳解】解:(1)由題意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B關(guān)于x軸對稱,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案為:6;(2)①結(jié)論:OC=BD,OC∥BD.理由:如圖,連接AB交x軸于點T.

∵A,B關(guān)于x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論