2025吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷及答案詳解【網(wǎng)校專用】_第1頁
2025吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷及答案詳解【網(wǎng)校專用】_第2頁
2025吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷及答案詳解【網(wǎng)校專用】_第3頁
2025吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷及答案詳解【網(wǎng)校專用】_第4頁
2025吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷及答案詳解【網(wǎng)校專用】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省雙遼市中考數(shù)學(xué)綜合提升測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個2、若關(guān)于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.23、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標(biāo)是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)4、一元二次方程(m+1)x2-2mx+m2-1=0有兩個異號根,則m的取值范圍是(

)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<15、已知關(guān)于x的一元二次方程標(biāo)有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C.且 D.二、多選題(5小題,每小題3分,共計15分)1、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心2、下列圖形中,是中心對稱圖形的是(

)A. B.C. D.3、下列關(guān)于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當(dāng)時,方程有兩個負實數(shù)根4、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.5、已知,⊙的半徑為5,,某條經(jīng)過點的弦的長度為整數(shù),則該弦的長度可能為(

)A.4 B.6 C.8 D.10第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.2、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結(jié)果保留)3、不透明的袋子里裝有一個黑球,兩個紅球,這些球除顏色外無其它差別,從袋子中取出一個球,不放回,再取出一個球,記下顏色,兩次摸出的球是一紅—黑的概率是________.4、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應(yīng)點為點Q,連接AQ,DQ.當(dāng)∠ADQ=90°時,AQ的長為______.5、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.四、簡答題(2小題,每小題10分,共計20分)1、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O(shè),Q,R為頂點的三角形相似,請直接寫出點R的縱坐標(biāo);(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標(biāo)是﹣1.求:①tan∠DCG的值;②點C的坐標(biāo).2、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標(biāo)是-2,求此時m的值;(2)已知當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,求出這兩個定點的坐標(biāo).五、解答題(4小題,每小題10分,共計40分)1、在平面內(nèi),給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于r(r為常數(shù)),到點O的距離等于r的所有點組成圖形G,ABC的平分線交圖形G于點D,連接AD,CD.求證:AD=CD.2、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.3、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.4、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.-參考答案-一、單選題1、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.3、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標(biāo),然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標(biāo).【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標(biāo)為(5,0),∵拋物線與x軸的兩個交點關(guān)于對稱軸對稱,∴拋物線與x軸的另一個交點坐標(biāo)為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關(guān)鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標(biāo).4、B【解析】【分析】設(shè)方程兩根為x1,x2,根據(jù)一元二次方程的定義和根與系數(shù)的關(guān)系求解即可.【詳解】解:設(shè)方程兩根為x1,x2,根據(jù)題意得m+1≠0,,解得m<1且m≠-1,∵x1?x2<0,∴Δ>0,∴m的取值范圍為m<1且m≠-1.故選:B.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個不相等的實數(shù)根;當(dāng)Δ=0,方程有兩個相等的實數(shù)根;當(dāng)Δ<0,方程沒有實數(shù)根.也考查了一元二次方程根與系數(shù)的關(guān)系.5、C【解析】【分析】由一元二次方程定義得出二次項系數(shù)k≠0;由方程有兩個不相等的實數(shù)根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內(nèi)容,解決本題的關(guān)鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內(nèi)容,能正確求出不等式(組)的解集等,本題對學(xué)生的計算能力有一定的要求.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.2、BD【解析】【分析】根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.3、BD【解析】【分析】直接利用方程根與系數(shù)的關(guān)系以及根的判別式分析求出即可.【詳解】解:當(dāng)a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當(dāng)時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當(dāng)時,方程有兩個負實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系,正確把握相關(guān)知識是解題關(guān)鍵.4、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.5、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.三、填空題1、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當(dāng)y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關(guān)鍵是求出圓上的點到直線AB的最大距離.2、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關(guān)鍵是熟悉公式:扇形的弧長=.3、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關(guān)鍵.4、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.5、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設(shè),則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關(guān)鍵.四、簡答題1、(1)y=﹣;(2)點R的縱坐標(biāo)為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標(biāo)為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點R的縱坐標(biāo)為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設(shè)其橫坐標(biāo)為m,然后用其分別表示出相關(guān)點的坐標(biāo),并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設(shè)點R的縱坐標(biāo)為n,則QN=|n|,如果△AOK與以O(shè),Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標(biāo)為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點,∴設(shè)點C坐標(biāo)為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設(shè)CE解析式為:y=﹣x+b,將點E坐標(biāo)代入得b=.∴CE解析式為:y=﹣x﹣,∵點N的縱坐標(biāo)是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點N坐標(biāo)為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點C坐標(biāo)為(﹣1,3).答:點C坐標(biāo)為(﹣1,3).【考點】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項知識點與能力,難度較大.2、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點的縱坐標(biāo)是?2,可以求得m的值;(2)根據(jù)當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,可以求得這兩個定點的坐標(biāo).【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標(biāo)是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,當(dāng)m=1時,y=x2-2x-3;當(dāng)m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論