版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages22頁試卷第=page11頁,共=sectionpages11頁人教版9年級數(shù)學(xué)上冊《圓》定向測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個(gè)輪子的半徑長為()A.m B.m C.5m D.m2、如圖,、為⊙O的切線,切點(diǎn)分別為A、B,交于點(diǎn)C,的延長線交⊙O于點(diǎn)D.下列結(jié)論不一定成立的是(
)A.為等腰三角形 B.與相互垂直平分C.點(diǎn)A、B都在以為直徑的圓上 D.為的邊上的中線3、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(4,3),以原點(diǎn)O為圓心,5為半徑作⊙O,則()A.點(diǎn)A在⊙O上B.點(diǎn)A在⊙O內(nèi)C.點(diǎn)A在⊙O外D.點(diǎn)A與⊙O的位置關(guān)系無法確定4、下列4個(gè)說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對稱軸;④弧是半圓;正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、一個(gè)商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(
)A. B.C. D.6、如圖,AB是半圓的直徑,點(diǎn)D是弧AC的中點(diǎn),∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°7、如圖,AB是的直徑,點(diǎn)B是弧CD的中點(diǎn),AB交弦CD于E,且,,則(
)A.2 B.3 C.4 D.58、已知:如圖,PA,PB分別與⊙O相切于A,B點(diǎn),C為⊙O上一點(diǎn),∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°9、如圖,、分別切于點(diǎn)、,點(diǎn)為優(yōu)弧上一點(diǎn),若,則的度數(shù)為(
)A. B. C. D.10、如圖,AB是⊙O的直徑,點(diǎn)E是AB上一點(diǎn),過點(diǎn)E作CD⊥AB,交⊙O于點(diǎn)C,D,以下結(jié)論正確的是()A.若⊙O的半徑是2,點(diǎn)E是OB的中點(diǎn),則CD=B.若CD=,則⊙O的半徑是1C.若∠CAB=30°,則四邊形OCBD是菱形D.若四邊形OCBD是平行四邊形,則∠CAB=60°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,,在射線AC上順次截取,,以為直徑作交射線于、兩點(diǎn),則線段的長是__________cm.2、如圖,在⊙O中,CD是直徑,弦ABCD,垂足為E,連接BC,若AB=cm,,則圓O的半徑為_______cm.3、如圖,將三角形AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)4、如圖,是的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.5、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.6、若⊙O的半徑為6cm,則⊙O中最長的弦為________厘米.7、如圖,中,長為,,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至,則邊掃過區(qū)域(圖中陰影部分)的面積為________.8、如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,1)、B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸于點(diǎn)C、D,則CD的長是____.9、如圖,在的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長等于_____.10、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),以CD為直徑作⊙O,⊙O分別與AC,BC交于點(diǎn)E,F(xiàn),過點(diǎn)F作⊙O的切線FG,交AB于點(diǎn)G,則FG的長為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、已知:如圖,在⊙O中,AB為弦,C、D兩點(diǎn)在AB上,且AC=BD.求證:.2、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.3、在平面直角坐標(biāo)系中,對于點(diǎn),給出如下定義:當(dāng)點(diǎn)滿足時(shí),稱點(diǎn)Q是點(diǎn)P的等和點(diǎn).已知點(diǎn).(1)在,,中,點(diǎn)P的等和點(diǎn)有______;(2)點(diǎn)A在直線上,若點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),求點(diǎn)A的坐標(biāo);(3)已知點(diǎn)和線段MN,對于所有滿足的點(diǎn)C,線段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).若MN的最小值為5,直接寫出b的取值范圍.4、如圖所示,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),過點(diǎn)B作BD⊥CD,垂足為點(diǎn)D,連結(jié)BC.BC平分∠ABD.求證:CD為⊙O的切線.5、已知拋物線經(jīng)過點(diǎn)(m,﹣4),交x軸于A,B兩點(diǎn)(A在B左邊),交y軸于C點(diǎn)對于任意實(shí)數(shù)n,不等式恒成立.(1)拋物線解析式;(2)在BC上方的拋物線對稱軸上是否存在點(diǎn)D,使得∠BDC=2∠BAC,若有求出點(diǎn)D的坐標(biāo),若沒有,請說明理由;(3)將拋物線沿x軸正方向平移一個(gè)單位,把得到的圖象在x軸下方的部分沿x軸向上翻折,圖的其余部分保持不變,得到一個(gè)新的圖象G,若直線y=x+b與新圖象G有四個(gè)交點(diǎn),求b的取值范圍(直接寫出結(jié)果即可).-參考答案-一、單選題1、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個(gè)輪子的半徑長為m,故選:D.【考點(diǎn)】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.2、B【解析】【分析】連接OB,OC,令M為OP中點(diǎn),連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點(diǎn),連接MA,MB,∵B,C為切點(diǎn),∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點(diǎn)A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識點(diǎn)靈活運(yùn)用是解題關(guān)鍵.3、A【解析】【分析】先求出點(diǎn)A到圓心O的距離,再根據(jù)點(diǎn)與圓的位置依據(jù)判斷可得.【詳解】解:∵點(diǎn)A(4,3)到圓心O的距離,∴OA=r=5,∴點(diǎn)A在⊙O上,故選:A.【考點(diǎn)】本題考查了對點(diǎn)與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點(diǎn)到圓心的距離為,則有:當(dāng)時(shí),點(diǎn)在圓外;當(dāng)時(shí),點(diǎn)在圓上,當(dāng)時(shí),點(diǎn)在圓內(nèi),也考查了勾股定理的應(yīng)用.4、B【解析】【分析】根據(jù)弧的分類、圓的性質(zhì)逐一判斷即可.【詳解】解:①直徑是最長的弦,故正確;②最長的弦才是直徑,故錯(cuò)誤;③過圓心的任一直線都是圓的對稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯(cuò)誤,正確的有兩個(gè),故選B.【考點(diǎn)】本題考查了對圓的認(rèn)識,熟知弦的定義、弧的分類是本題的關(guān)鍵.5、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.6、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點(diǎn)D是弧AC的中點(diǎn),可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點(diǎn)D是弧AC的中點(diǎn),∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點(diǎn)】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.7、C【解析】【分析】是的直徑,點(diǎn)是弧的中點(diǎn),從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設(shè)半徑為,連接,是的直徑,點(diǎn)是弧的中點(diǎn),由垂徑定理可知:,且點(diǎn)是的中點(diǎn),,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點(diǎn)】本題考查垂徑定理,解題的關(guān)鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型8、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點(diǎn)A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點(diǎn)】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.9、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對的弧所對的圓心角,即連接OA,OB;再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點(diǎn)】此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.10、C【解析】【分析】根據(jù)垂徑定理,解直角三角形知識,一一求解判斷即可.【詳解】解:A、∵OC=OB=2,∵點(diǎn)E是OB的中點(diǎn),∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本選項(xiàng)錯(cuò)誤不符合題意;B、根據(jù),缺少條件,無法得出半徑是1,本選項(xiàng)錯(cuò)誤,不符合題意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四邊形OCBD是菱形;故本選項(xiàng)正確本選項(xiàng)符合題意.D、∵四邊形OCBD是平行四邊形,OC=OD,所以四邊形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本選項(xiàng)錯(cuò)誤不符合題意..故選:C.【考點(diǎn)】本題考查了圓周角定理,垂徑定理,菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的理解題意是解題的關(guān)鍵.二、填空題1、6【解析】【分析】過點(diǎn)作于,連,根據(jù)垂徑定理得,在中,,,利用含30度的直角三角形三邊的關(guān)系可得到,再利用勾股定理計(jì)算出,由得到答案.【詳解】解:過點(diǎn)作于,連,如圖則,在中,,,則,在中,,,則,則.故答案為6.【考點(diǎn)】本題考查了垂徑定理,含30度的直角三角形三邊的關(guān)系以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.2、2【解析】【詳解】解:如圖,連接OB∵∴∵在⊙O中,CD是直徑,弦ABCD∴AE=BE,且△OBE是等腰直角三角形∵AB=cm∴BE=cm∴OB=2cm故答案為:2.【考點(diǎn)】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱藞A周角定理和等腰直角三角形的性質(zhì).3、5π【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計(jì)算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.4、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因?yàn)榈冗吶切蜛BC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因?yàn)镺A=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點(diǎn)】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點(diǎn),全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.5、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關(guān)鍵.6、12【解析】【詳解】解:∵⊙O的半徑為6cm,∴⊙O的直徑為12cm,即圓中最長的弦長為12cm.故答案為12.7、【解析】根據(jù)已知的條件和旋轉(zhuǎn)的性質(zhì)得出兩個(gè)扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉(zhuǎn)120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點(diǎn)】本題考查圓的綜合應(yīng)用,熟練掌握旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)及扇形面積的求法是解題關(guān)鍵.8、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點(diǎn)】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.9、【解析】【分析】由AB、BC、AC長可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個(gè)小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點(diǎn)】本題考查了弧長的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.10、.【解析】【分析】先利用勾股定理求出AB=10,進(jìn)而求出CD=BD=5,再求出CF=4,進(jìn)而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點(diǎn)D是AB中點(diǎn),∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點(diǎn)】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.三、解答題1、證明見解析【解析】【分析】根據(jù)等邊對等角可以證得∠A=∠B,然后根據(jù)SAS即可證得兩個(gè)三角形全等.【詳解】證明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).【考點(diǎn)】本題考查了三角形全等的判定與性質(zhì),同圓半徑相等.正確理解三角形的判定定理是關(guān)鍵.2、證明見解析.【解析】【分析】根據(jù)AB=CD,得出,進(jìn)而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點(diǎn)】此題考查圓心角、弧、弦的關(guān)系,關(guān)鍵是利用三者的關(guān)系解答.3、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計(jì)算即可;(2)由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,根據(jù)等和點(diǎn)的定義,A的橫坐標(biāo)比縱坐標(biāo)大2,由此可得方程,求解即可;(3)因?yàn)榫€段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).且MN的最小值為5,所以PC的最大距離不能超過5,分別找到點(diǎn)P和點(diǎn)C的等和點(diǎn)所在的區(qū)域或直線,然后得到MN取得最大值時(shí),b的邊界即可.(1)解:由題意可知:∵,∴點(diǎn)Q1是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q2不是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q3是點(diǎn)P的等和點(diǎn);∴點(diǎn)P的等和點(diǎn)有,,(2)解:設(shè),由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,∵點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),∴A的橫坐標(biāo)比縱坐標(biāo)大2,則,解之得:,故,(3)解:∵P(2,0),∴P點(diǎn)的等和點(diǎn)在直線y=x+2上,∵B(b,0),∴B點(diǎn)的等和點(diǎn)在直線y=x+b上,設(shè)直線y=x+b與y軸的交點(diǎn)為B'(0,b),∵BC=1,∴C點(diǎn)在以B為圓心,半徑為1的圓上,∴點(diǎn)C的等和點(diǎn)是兩條直線及其之間與其平行的所有平行線上,以B'為圓心,1為半徑作圓,過點(diǎn)B'作y=x+2的垂線交圓與N點(diǎn),交直線于M點(diǎn),∵M(jìn)N的最小值為5,∴B'M最小值為4,在Rt△B'MP'中,B'P=,∴PB=,∴OB=,同理當(dāng)B點(diǎn)在y軸左側(cè)時(shí)OB=,∴≤b≤.【考點(diǎn)】本題考查新定義,涉及到平面直角坐標(biāo)系,坐標(biāo)軸上兩點(diǎn)之間的距離,一次函數(shù),解題的關(guān)鍵是理解題意,根據(jù)題意進(jìn)行求解,(3)較難,需理解題意將其轉(zhuǎn)化為求PC最大值問題.4、證明見解析.【解析】【詳解】【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再證明OC∥BD,從而得到OC⊥CD,然后根據(jù)切線的判定定理得到結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職第一學(xué)年(護(hù)理)中醫(yī)護(hù)理實(shí)操試題及答案
- 2025年中職(建筑裝飾)室內(nèi)軟裝搭配階段測試題及解析
- 2025年高職英語教育(英語教學(xué)技能)試題及答案
- 2025年高職新能源汽車(充電樁實(shí)操)試題及答案
- 2025年高職運(yùn)動(dòng)與休閑(運(yùn)動(dòng)生理學(xué))試題及答案
- 2025年高職酒店管理(餐飲服務(wù))試題及答案
- 2025年大學(xué)大三(應(yīng)用化學(xué))分析化學(xué)試題及答案
- 2026年旅游管理(旅游市場營銷)考題及答案
- 2025年大學(xué)大一(生命科學(xué)基礎(chǔ))微生物學(xué)基礎(chǔ)試題及解析
- 2025年大學(xué)行政管理(行政管理)試題及答案
- 學(xué)校“1530”安全教育記錄表(2024年秋季全學(xué)期)
- DBJ50T-306-2018 建設(shè)工程檔案編制驗(yàn)收標(biāo)準(zhǔn)
- 植物生物化學(xué)
- 產(chǎn)業(yè)研究報(bào)告-中國二手奢侈品行業(yè)發(fā)展現(xiàn)狀、市場規(guī)模、投資前景分析(智研咨詢)
- 《低溫技術(shù)及其應(yīng)用》課件
- 電力儲能知識培訓(xùn)課件
- 2025年1月國家開放大學(xué)法律事務(wù)專科《刑法學(xué)(2)》期末紙質(zhì)考試試題及答案
- 2024年1月福建高中學(xué)業(yè)水平合格考物理試卷真題(含答案解析)
- 大跨度倒三角管桁架施工方案
- 健合集團(tuán)在線測評原題
- 2024年河北省中考?xì)v史試題卷(含答案逐題解析)
評論
0/150
提交評論