版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省江陰市中考數(shù)學(xué)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,中,,O是AB邊上一點(diǎn),與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.2、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(
)A.相交 B.相離 C.相切 D.無(wú)法判斷3、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.4、下列事件中,是必然事件的是()A.實(shí)心鐵球投入水中會(huì)沉入水底B.車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈C.打開(kāi)電視,正在播放《大國(guó)工匠》D.拋擲一枚硬幣,正面向上5、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,在中,,,點(diǎn)D,E分別為,上的點(diǎn),且.將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B,A,E在同一條直線上,連接,.下列結(jié)論正確的是(
)A. B. C. D.旋轉(zhuǎn)角為2、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE3、如圖,是的直徑,,是上的點(diǎn),且,分別與,相交于點(diǎn),,則下列結(jié)論一定成立的是(
)A. B. C.平分D. E.4、兩個(gè)關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個(gè)根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-25、觀察如圖推理過(guò)程,錯(cuò)誤的是(
)A.因?yàn)榈亩葦?shù)為,所以B.因?yàn)?,所以C.因?yàn)榇怪逼椒郑訢.因?yàn)?,所以第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,點(diǎn)O是正方形ABCD的對(duì)稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點(diǎn),連接EF,已知,.(1)以點(diǎn)E,O,F(xiàn),D為頂點(diǎn)的圖形的面積為_(kāi)________;(2)線段EF的最小值是_________.2、如圖,在⊙O中,弦AB⊥OC于E點(diǎn),C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.3、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過(guò)多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).4、如圖,AB是半圓O的直徑,AB=4,點(diǎn)C,D在半圓上,OC⊥AB,,點(diǎn)P是OC上的一個(gè)動(dòng)點(diǎn),則BP+DP的最小值為_(kāi)_____.5、若某二次函數(shù)圖象的形狀與拋物線y=3x2相同,且頂點(diǎn)坐標(biāo)為(0,-2),則它的表達(dá)式為_(kāi)_______.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為.求的值及拋物線與軸的交點(diǎn)坐標(biāo);若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.2、已知==,求的值.五、解答題(4小題,每小題10分,共計(jì)40分)1、已知,P是直線AB上一動(dòng)點(diǎn)(不與A,B重合),以P為直角頂點(diǎn)作等腰直角三角形PBD,點(diǎn)E是直線AD與△PBD的外接圓除點(diǎn)D以外的另一個(gè)交點(diǎn),直線BE與直線PD相交于點(diǎn)F.(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),若∠DBE=30°,PB=2,求DE的長(zhǎng);(2)當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.2、電影《長(zhǎng)津湖》以抗美援朝戰(zhàn)爭(zhēng)第二次戰(zhàn)役中的長(zhǎng)津湖戰(zhàn)役為背景,講述71年前,中國(guó)人民志愿軍赴朝作戰(zhàn),在極寒嚴(yán)酷環(huán)境下,東線作戰(zhàn)部隊(duì)?wèi){著鋼鐵意志和英勇無(wú)畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實(shí)歷史.為紀(jì)念歷史,緬懷先烈,我校團(tuán)委將電影中的四位歷史英雄人物頭像制成編號(hào)為A、B、C、D的四張卡片(除編號(hào)和頭像外其余完全相同),活動(dòng)時(shí)學(xué)生根據(jù)所抽取的卡片來(lái)講述他們?cè)谟捌胁憠验?、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強(qiáng)從中隨機(jī)抽取一張,然后放回并洗勻,小葉再?gòu)闹须S機(jī)抽取一張.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求小強(qiáng)和小葉抽到的兩張卡片恰好是同一英雄人物的概率.3、在中,,,過(guò)點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時(shí),①依題意補(bǔ)全圖形,并直接寫(xiě)出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫(xiě)出AE,BE,AG之間的數(shù)量關(guān)系.4、(1)解方程:(2)我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中記載:“今有宛田,下周三十步,徑十六步,問(wèn)為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長(zhǎng),徑是指扇形所在圓的直徑.求這口宛田的面積.-參考答案-一、單選題1、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,根據(jù)切線的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.也考查了相似三角形的判定與性質(zhì).2、A【解析】【分析】過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.3、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對(duì)的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.4、A【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念進(jìn)行判斷即可.【詳解】解:A、實(shí)心鐵球投入水中會(huì)沉入水底,是必然事件,該選項(xiàng)符合題意;B、車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈,是隨機(jī)事件,該選項(xiàng)不合題意;C、打開(kāi)電視,正在播放《大國(guó)工匠》,是隨機(jī)事件,該選項(xiàng)不合題意;D、拋擲一枚硬幣,正面向上,是隨機(jī)事件,該選項(xiàng)不合題意;故選:A.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.二、多選題1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,可得旋轉(zhuǎn)角為60°,故D錯(cuò)誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結(jié)果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,則旋轉(zhuǎn)角為:180°120°=60°,故D錯(cuò)誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的判定與性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握旋轉(zhuǎn)的性質(zhì)與等腰三角形的性質(zhì)是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對(duì)的兩條弧,即可判斷A選項(xiàng)、B選項(xiàng)正確,由圓周角定理知,在同圓或等圓中,同弧所對(duì)的圓周角相等,可判斷C選項(xiàng)正確,題目中并沒(méi)有提到E是OB中點(diǎn),所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項(xiàng)正確;B.由垂徑定理得:,B選項(xiàng)正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項(xiàng)正確;D.E不一定是OB中點(diǎn),所以不能證明OE=BE,D錯(cuò)誤.故選:ABC.【考點(diǎn)】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對(duì)的兩條弧是解題的關(guān)鍵.3、ACDE【解析】【分析】根據(jù)直徑的性質(zhì),垂徑定理等知識(shí)一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點(diǎn),∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項(xiàng)錯(cuò)誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點(diǎn)】本題考查直徑的性質(zhì)、垂徑定理、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.4、AD【解析】【分析】利用方程根的定義去驗(yàn)證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個(gè)根,∴是方程的一個(gè)根,∴是方程的一個(gè)根,即時(shí)方程的一個(gè)根.∵是方程的一個(gè)根,∴,當(dāng)x=時(shí),,∴是方程的根.故選:A,D.【考點(diǎn)】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.5、ABC【解析】【分析】A.
根據(jù)定理“圓心角的度數(shù)等于它所對(duì)的弧的度數(shù)?!笨傻?B.
根據(jù)定理“同圓或等圓中,相等的圓心角所對(duì)的弧相等。”可得.C.
根據(jù)“垂徑定理”及弦的定義可得.D.
根據(jù)“在同圓或等圓中,若兩個(gè)圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對(duì)應(yīng)的其余各組量也相等。”可得.【詳解】由定理“圓心角的度數(shù)等于它所對(duì)的弧的度數(shù)?!盇.∵的度數(shù)是∴,故選項(xiàng)A錯(cuò)誤.B.
由定理“同圓中相等的圓心角所對(duì)的弧相等?!?,B選項(xiàng)題干中不是同一個(gè)圓,故選項(xiàng)B錯(cuò)誤.C.
由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。沒(méi)有過(guò)圓心,不是直徑,并且,根據(jù)弦的定義,不是圓O的弦,因此無(wú)法判斷,故選項(xiàng)C錯(cuò)誤.D.
∵∴即由定理“在同圓或等圓中,若兩個(gè)圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對(duì)應(yīng)的其余各組量也相等?!彼?,故選項(xiàng)D正確.【考點(diǎn)】本題旨在考查圓,圓心角,所對(duì)應(yīng)的圓弧及弦的相關(guān)定義及性質(zhì)定理,熟練掌握?qǐng)A的相關(guān)定理是解題的關(guān)鍵.三、填空題1、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時(shí),EF有最小值,故答案為:.【考點(diǎn)】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.2、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長(zhǎng)為5,故答案為:5.【點(diǎn)睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱斯垂啥ɡ恚?、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值4、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問(wèn)題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點(diǎn)睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關(guān)系等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題.5、y=3x2-2或y=-3x2-2【解析】【分析】根據(jù)二次函數(shù)的圖象特點(diǎn)即可分類求解.【詳解】二次函數(shù)的圖象與拋物線y=3x2的形狀相同,說(shuō)明它們的二次項(xiàng)系數(shù)的絕對(duì)值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點(diǎn)】此題主要考查二次函數(shù)的圖象,解題的關(guān)鍵是熟知二次函數(shù)形狀相同,二次項(xiàng)系數(shù)的絕對(duì)值相等.四、簡(jiǎn)答題1、(1)a=-1;坐標(biāo)為,;(2).【解析】【分析】(1)利用拋物線的對(duì)稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點(diǎn)坐標(biāo);(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時(shí),y<0,即-1-2+m<0;當(dāng)x=-1時(shí),y≥0,即-1+2+m≥0,然后解兩個(gè)不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當(dāng)時(shí),,解得,,所以拋物線與軸的交點(diǎn)坐標(biāo)為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對(duì)稱軸為直線,∵拋物線與軸的交點(diǎn)都在點(diǎn),之間,∴當(dāng)時(shí),,即,解得;當(dāng)時(shí),,即,解得,∴的取值范圍為.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問(wèn)題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.2、-1【解析】【分析】設(shè)===k,則a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加減消元法可計(jì)算出a=2k,b=k,c=3k,然后把a(bǔ)=2k,b=k,c=3k代入中進(jìn)行分式的化簡(jiǎn)求值即可.【詳解】解:設(shè)===k,則a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分別減去上述三個(gè)式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考點(diǎn)】本題考查了比例的性質(zhì),掌握設(shè)比法求值是解題關(guān)鍵.五、解答題1、(1)(2)PF=AB-PB或PF=AB+PB,理由見(jiàn)解析【分析】(1)根據(jù)△PBD等腰直角三角形,PB=2,求出DB的長(zhǎng),由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據(jù)同弧所對(duì)的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫(huà)以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點(diǎn)P在點(diǎn)A、B之間,由(1)的圖根據(jù)同弧所對(duì)的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點(diǎn)P在點(diǎn)B的右側(cè),如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,F(xiàn)P=AB-PB或PF=AB+PB.【點(diǎn)睛】本題考查了圓的性質(zhì),等腰直角三角形,三角形全等的判定,做題的關(guān)鍵是注意(2)的兩種情況.2、【分析】根據(jù)題意列出樹(shù)狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹(shù)狀圖如下:故小強(qiáng)和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點(diǎn)睛】此題考查了用列表法或樹(shù)狀圖法求概率,解題時(shí)要注意此題是放回試驗(yàn)還是不放回試驗(yàn),用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、(1)①BC⊥CF;證明見(jiàn)詳解;②見(jiàn)詳解;(2)2AE2=4AG2+BE2.證明見(jiàn)詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長(zhǎng)BA交CF延長(zhǎng)線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 論壇嘉賓活動(dòng)策劃方案(3篇)
- 云端跑步活動(dòng)策劃方案(3篇)
- 2026年智能臥室照明系統(tǒng)項(xiàng)目項(xiàng)目建議書(shū)
- 2025年農(nóng)村養(yǎng)老金融支持政策研究與發(fā)展報(bào)告
- 2025年鋁合金門(mén)窗五金件政策影響五年分析報(bào)告
- 大學(xué)師德培訓(xùn)
- 眼底病防治知識(shí)培訓(xùn)課件
- 臉部皮膚營(yíng)養(yǎng)補(bǔ)充策略
- 2025年企業(yè)內(nèi)部生產(chǎn)與供應(yīng)鏈管理規(guī)范
- 非洲安全問(wèn)題課件
- 外貿(mào)進(jìn)出口2025年代理報(bào)關(guān)合同協(xié)議
- 2026年包頭職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫(kù)帶答案解析
- 2024年安徽理工大學(xué)馬克思主義基本原理概論期末考試模擬試卷
- 2025年醫(yī)院檢驗(yàn)科主任年終述職報(bào)告
- 2025-2026學(xué)年人教版(簡(jiǎn)譜)(新教材)初中音樂(lè)七年級(jí)(上冊(cè))期末測(cè)試卷附答案(共三套)
- 2025年大學(xué)(森林保護(hù))森林病理學(xué)期末試題及答案
- (南開(kāi)中學(xué))重慶市高2026屆高三第五次質(zhì)量檢測(cè)物理試卷(含答案詳解)
- 骨質(zhì)疏松骨折課件
- 2025寧夏賀蘭工業(yè)園區(qū)管委會(huì)招聘40人筆試備考試題及答案解析
- 透析充分性及評(píng)估
- 糖尿病足病新進(jìn)展課件
評(píng)論
0/150
提交評(píng)論