版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.92、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.83、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.164、菱形ABCD的周長是8cm,∠ABC=60°,那么這個菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm5、如圖,矩形ABCD中,AC交BD于點O,且AB=24,BC=10,將AC繞點C順時針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點,則四邊形OFGC的面積是()A.100 B.144 C.169 D.2256、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC7、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.38、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④9、直角三角形中,兩直角邊長分別是12和5,則斜邊上的中線長是()A.2.5 B.6 C.6.5 D.1310、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、正方形ABCD的邊長為4,則圖中陰影部分的面積為_____.2、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.3、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.4、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____5、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.6、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.7、如圖,在長方形ABCD中,.在DC上找一點E,沿直線AE把折疊,使D點恰好落在BC上,設(shè)這一點為F,若的面積是54,則的面積=______________.8、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.9、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.10、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點E是邊BC延長線上一點,連接AE、DE,過點C作CF⊥DE于點F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.2、(3)點P為AC上一動點,則PE+PF最小值為.3、如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.
(1)在方格紙中畫出以AB為對角線的正方形AEBF,點E、F在小正方形的頂點上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.4、如圖,ABCD是平行四邊形,AD=4,AB=5,點A的坐標(biāo)為(-2,0),求點B、C、D的坐標(biāo).5、如圖,在△ABC中,AB=AC,AD⊥BC于點D.(1)若DE∥AB交AC于點E,證明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E為AC中點,求AD的值.-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.2、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵MN垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當(dāng)時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.4、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.5、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點,,,四邊形為平行四邊形,又繞點順時針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識點,熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.6、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.8、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當(dāng)∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關(guān)鍵.9、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).10、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長.二、填空題1、8【解析】【分析】正方形的對角線是它的一條對稱軸,對應(yīng)點到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進行計算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會于轉(zhuǎn)化的思想思考問題.2、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.3、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.4、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.5、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.6、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.7、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.8、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運用題目中的條件表示出EF列出方程式解題的關(guān)鍵.9、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.10、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時,AP有最小值是本題關(guān)鍵.三、解答題1、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進行計算.【詳解】(1)證明:∵DF=EF∴點F為DE的中點又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識,解題的關(guān)鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.2、【分析】(1)根據(jù)折疊的性質(zhì)可得:∠1=∠2,再由矩形的性質(zhì),可得∠2=∠3,從而得到∠1=∠3,即可求解;(2)設(shè)FD=x,則AF=CF=8-x,再由勾股定理,可得DF=3,從而得到CF=5,即可求解;(3)連接PB,根據(jù)折疊的性質(zhì)可得△ECP≌△BCP,從而得到PE=PB,進而得到當(dāng)點F、P、B三點共線時,PE+PF最小,最小值為BF的長,再由勾股定理,即可求解.【詳解】(1)解:△ACF是等腰三角形,理由如下:如圖,由折疊可知,∠1=∠2,∵四邊形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四邊形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,設(shè)FD=x,則AF=CF=8-x,在Rt△AFD中,根據(jù)勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如圖,連接PB,根據(jù)折疊得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴當(dāng)點F、P、B三點共線時,PE+PF最小,最小值為BF的長,由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值為.【點睛】本題主要考查了矩形與折疊問題,等腰三角形的判定,熟練掌握矩形和折疊的性質(zhì)是解題的關(guān)鍵.3、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長,以AB為對角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點A平移找到點E,點F即可完成求解;(2)根據(jù)勾股定理求出CD的長,△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點C平移得到點M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長為AE,∴AE2=10,∴AE=,根據(jù)勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中山市博愛醫(yī)院2026年人才招聘49人備考題庫及參考答案詳解一套
- 5G+AI輔助重癥患者個體化治療策略
- 2026年廣州醫(yī)科大學(xué)附屬口腔醫(yī)院招聘備考題庫(一)完整答案詳解
- 3D打印人工皮膚的美學(xué)與功能重建
- 2025年義烏市勝利幼兒園招聘備考題庫及參考答案詳解1套
- 2025年改則縣審計局面向社會公開聘用編外工程師備考題庫及一套答案詳解
- 簡約中國風(fēng)地產(chǎn)營銷策劃方案
- 項目高處作業(yè)施工方案
- 2025年廈門市集美區(qū)樂安小學(xué)非在編教師招聘備考題庫及答案詳解1套
- 2025年四川省岳池銀泰投資(控股)有限公司公開招聘急需緊缺專業(yè)人才備考題庫有答案詳解
- 《產(chǎn)科危急重癥早期識別中國專家共識(2024年版)》解讀
- 綠色建筑自評估報告參考樣式
- 涉密文件解密管理制度
- 高中英語必背3500單詞表完整版
- 巡特警(輔警)政審表
- 醫(yī)用耗材知識培訓(xùn)課件
- 《竹木復(fù)合集裝箱底板》(T-CSF 009-2019)
- 婚介協(xié)議書模板
- ISO14001及ISO45001法律法規(guī)清單
- 成人學(xué)歷銷售培訓(xùn)課件
- 民主測評及征求意見表
評論
0/150
提交評論