考點解析-人教版8年級數(shù)學下冊《平行四邊形》單元測試試卷(含答案詳解)_第1頁
考點解析-人教版8年級數(shù)學下冊《平行四邊形》單元測試試卷(含答案詳解)_第2頁
考點解析-人教版8年級數(shù)學下冊《平行四邊形》單元測試試卷(含答案詳解)_第3頁
考點解析-人教版8年級數(shù)學下冊《平行四邊形》單元測試試卷(含答案詳解)_第4頁
考點解析-人教版8年級數(shù)學下冊《平行四邊形》單元測試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.42、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形3、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④4、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.65、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.46、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.7、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,是數(shù)形結(jié)合的重要紐帶.數(shù)學家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個8、如圖,在長方形ABCD中,AB=10cm,點E在線段AD上,且AE=6cm,動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,同時點Q在線段BC上.以vcm/s的速度由點B向點C運動,當△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或9、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.5410、如圖,在矩形ABCD中,點O為對角線BD的中點,過點O作線段EF交AD于F,交BC于E,OB=EB,點G為BD上一點,滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在正方形ABCD中,,E是AB的中點,P是AD上任意一點,連接PE,PC,若是等腰三角形,則AP的長可能是______.2、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.3、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.4、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.5、如圖,在四邊形中,,分別是的中點,分別以為直徑作半圓,這兩個半圓面積的和為,則的長為_______.6、如圖,在平面直角坐標系中,O是菱形ABCD對角線BD的中點,AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點O旋轉(zhuǎn),使點D落在x軸上,則旋轉(zhuǎn)后點C的對應點的坐標是_____________.7、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).8、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點A的直線l折疊,使點D落到AB邊上的點處,折痕交CD邊于點E.若點P是直線l上的一個動點,則+PB的最小值_______.9、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.10、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動點,F(xiàn)、G為AD邊上兩個動點,且∠FEG=30°,則線段FG的長度最大值為_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知△ABC中,D是AB上一點,AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點,求證:BD=2EF.

2、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.3、如圖,中,對角線AC、BD相交于點O,點E,F(xiàn),G,H分別是OA、OB、OC、OD的中點,順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________4、已知:在中,點、點、點分別是、、的中點,連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點,連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.

5、(1)如圖a,矩形ABCD的對角線AC、BD交于點O,過點D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.

(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應變?yōu)槭裁矗空f明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結(jié)論又應變?yōu)槭裁矗空f明理由.-參考答案-一、單選題1、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.2、D【解析】【分析】根據(jù)正方形的判定定理進行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項不符合題意;D選項符合題意;故選:D.【點睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.3、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識,構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點.4、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.5、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.6、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.7、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)題意可知當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP,②當AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關(guān)系求解即可.【詳解】解:當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,∴點P和點Q的運動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點,注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.9、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導得,再根據(jù)余角的性質(zhì)計算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點O為對角線BD的中點,∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識;解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.二、填空題1、或或【解析】【分析】分三種情況:當時,當時,當時,利用等腰三角形的性質(zhì)和正方形的性質(zhì)進行求解即可.【詳解】解:如圖1,當時,∵四邊形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴則,∵E是AB的中點,∴∴;如圖2.當點P與點D重合時,∵四邊形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中點,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如圖3.當時,設,則,在直角△PDC中,,在直角△AEP中,,則.解得,即.綜上所述,AP的長可能是1或2或.故答案為:1或2或.【點睛】本題主要考查了等腰三角形的性質(zhì),正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,解題的關(guān)鍵在于能夠熟練掌握等腰三角形的性質(zhì)和正方形的性質(zhì).2、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質(zhì),找到點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.3、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應用解決問題是解題的關(guān)鍵.4、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關(guān)鍵.5、4【解析】【分析】根據(jù)題意連接BD,取BD的中點M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點M,連接EM、FM,延長EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點,∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點睛】本題主要考查對勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識點的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關(guān)鍵.6、或##或【解析】【分析】分當D落在x軸正半軸時和當D落在x軸負半軸時,兩種情況討論求解即可.【詳解】解:如圖1所示,當D落在x軸正半軸時,∵O是菱形ABCD對角線BD的中點,∴AO⊥DO,∴當D落在x軸正半軸時,A點在y軸正半軸,∴同理可得A、B、C三點均在坐標軸上,且點C在y軸負半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點C的坐標為(0,);如圖2所示,當D落在x軸負半軸時,同理可得,∴點C的坐標為(0,);∴綜上所述,點C的坐標為(0,)或(0,),故答案為:(0,)或(0,).【點睛】本題主要考查了菱形的性質(zhì),坐標與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.7、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.8、【解析】【分析】不管P點在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當D、P、D'共線時PD+PB最短.【詳解】過點D作DM⊥AB交BA的延長線于點M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點D與點D′關(guān)于直線l對稱,連接BD交直線l于點P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.9、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.10、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點睛】本題考查了四邊形中動點問題,圖解法數(shù)學思想依據(jù)是數(shù)形結(jié)合思想.它的應用能使復雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動點.如何合理運用各動點之間的關(guān)系,同學們往往缺乏思路,常常導致思維混亂.實際上求解特殊四邊形的動點問題,關(guān)鍵是是利用圖解法抓住它運動中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運動變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設條件的圖形進行討論,就能找到解決的途徑,有效避免思維混亂.三、解答題1、見解析.【分析】先證明再證明EF是△CDB的中位線,從而可得結(jié)論.【詳解】證明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中點∴EF是△CDB的中位線∴BD=2EF【點睛】本題考查的是等腰三角形的性質(zhì),三角形的中位線的性質(zhì),掌握“三角形的中位線平行于第三邊且等于第三邊的一半”是解題的關(guān)鍵.2、見解析【分析】連結(jié),由對稱的性質(zhì)可知,進而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強,有一定難度.準確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.3、(1)見解析;(2)16【分析】(1)根據(jù)平行四邊形的性質(zhì),可得OA=OC,OB=OD,從而得到OE=OG,OF=OH,即可求證;(2)根據(jù)三角形中位線定理,可得,從而得到,再由(1)四邊形EFGH是平行四邊形,即可求解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴OE=OG,OF=OH,∴四邊形EFGH是平行四邊形;(2)∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴,∵的周長為2(AB+BC)=32,∴,∴,由(1)知:四邊形EFGH是平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論