基礎強化人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解版)_第1頁
基礎強化人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解版)_第2頁
基礎強化人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解版)_第3頁
基礎強化人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解版)_第4頁
基礎強化人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》同步訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、若點P(m﹣1,5)與點Q(3,2﹣n)關于y軸對稱,則m+n的值是()A.﹣5 B.1 C.5 D.112、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm3、如圖,牧童在A處放牛,其家在B處,A、B到河岸的距離分別為AC和BD,且AC=BD,若點A到河岸CD的中點的距離為500米,則牧童從A處把牛牽到河邊飲水再回家,最短距離是()A.750米 B.1000米 C.1500米 D.2000米4、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關于直線l對稱,則∠B度數為(

)A. B. C. D.5、給出下列命題,正確的有(

)個①等腰三角形的角平分線、中線和高重合;②等腰三角形兩腰上的高相等;③等腰三角形最小邊是底邊;④等邊三角形的高、中線、角平分線都相等;⑤等腰三角形都是銳角三角形A.1個 B.2個 C.3個 D.4個6、如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則△ACD的周長為()A.10cm B.12cm C.15cm D.20cm7、點A(2,-1)關于y軸對稱的點B的坐標為(

)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)8、下列黑體字中,屬于軸對稱圖形的是(

)A.善 B.勤 C.健 D.樸9、小軍同學在網格紙上將某些圖形進行平移操作,他發(fā)現平移前后的兩個圖形所組成的圖形可以是軸對稱圖形.如圖所示,現在他將正方形從當前位置開始進行一次平移操作,平移后的正方形的頂點也在格點上,則使平移前后的兩個正方形組成軸對稱圖形的平移方向有(

)A.3個 B.4個 C.5個 D.無數個10、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數為(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在△ABC中,∠ACB的平分線交AB于點D,

DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______2、如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為___cm2.3、如圖,在和中,,,,,以點為頂點作,兩邊分別交,于點,,連接,則的周長為______.4、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長為__.5、如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=_______°.6、小明將一張正方形紙片按如圖所示順序折疊成紙飛機,當機翼展開在同一平面時(機翼間無縫隙),的度數是________.7、點(3,0)關于y軸對稱的點的坐標是_______8、如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=

___________°.9、如圖,一束光沿方向,先后經過平面鏡、反射后,沿方向射出,已知,,則_________.10、如圖,等邊ABC的邊長為6,點D是AB上一動點,過點D作DEAC交BC于E,將BDE沿著DE翻折得到,連接,則的最小值為________.三、解答題(5小題,每小題6分,共計30分)1、如圖,在四邊形ABCD中,,∠BAD=90°,點E在AC上,EC=ED=DA.求∠CAB的度數.2、(1)已知等腰三角形的兩邊長分別為9cm和15cm,則周長為多少?(2)已知等腰三角形的兩邊長分別為6cm和15cm,則周長為多少?3、在中,BE,CD為的角平分線,BE,CD交于點F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大?。?、如圖,在△ABC中,AB=AC,點D是BC的中點,連接AD,過點C作CE∥AD,交BA的延長線于點E.(1)求證:EC⊥BC;(2)若∠BAC=120°,試判定△ACE的形狀,并說明理由.5、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當時,則_______°;(2)當時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當的值最大時,用等式表示PE,PD與AB之間的數量關系為_______,并證明.-參考答案-一、單選題1、A【解析】【分析】根據關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,求出m、n,問題得解.【詳解】解:由題意得:m﹣1=﹣3,2﹣n=5,解得:m=﹣2,n=﹣3,則m+n=﹣2﹣3=﹣5,故選:A【考點】本題考查了關于y軸的對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數.2、C【解析】【分析】根據線段垂直平分線性質得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質,三角形周長問題,解題的關鍵是掌握垂直平分線的性質.3、B【解析】【詳解】解:作A的對稱點,連接B交CD于P,,∴AP+PB=,此時值最小,在中,,,,∵點A到河岸CD的中點的距離為500米,∴B=AP+PB=1000米4、C【解析】【分析】由已知條件,根據軸對稱的性質可得∠C=∠C′=30°,利用三角形的內角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關于直線l對稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點】主要考查了軸對稱的性質與三角形的內角和是180度;求角的度數常常要用到“三角形的內角和是180°.5、B【解析】【詳解】解:①等腰三角形的頂角角平分線、底邊上的中線和底邊上的高重合,故本選項錯誤;②等腰三角形兩腰上的高相等,本選項正確;③等腰三角形最小邊不一定底邊,故本選項錯誤;④等邊三角形的高、中線、角平分線都相等,本選項正確;⑤等腰三角形可以是鈍角三角形,故本選項錯誤,故選B6、C【解析】【分析】根據圖形翻折變換的性質得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出結論.【詳解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周長=AC+CD+AD=AC+BC=15cm.故選C.【考點】本題考查了翻折變換,熟知圖形翻折不變性的性質是解答此題的關鍵.7、D【解析】【分析】根據點坐標關于軸對稱的變換規(guī)律即可得.【詳解】解:點坐標關于軸對稱的變換規(guī)律:橫坐標互為相反數,縱坐標相同.則點關于軸對稱的點的坐標為,故選:D.【考點】本題考查了點坐標與軸對稱變化,熟練掌握點坐標關于軸對稱的變換規(guī)律是解題關鍵.8、A【解析】【分析】軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據軸對稱圖形的定義可得答案.【詳解】解:由軸對稱圖形的定義可得:善是軸對稱圖形,勤,健,樸三個字都不是軸對稱圖形,故符合題意,不符合題意,故選:【考點】本題考查的是軸對稱圖形的含義,軸對稱圖形的識別,掌握定義,確定對稱軸是解題的關鍵.9、C【解析】【分析】結合正方形的特征,可知平移的方向只有5個,向上,下,右,右上45°,右下45°方向,否則兩個圖形不軸對稱.【詳解】因為正方形是軸對稱圖形,有四條對稱軸,因此只要沿著正方形的對稱軸進行平移,平移前后的兩個圖形組成的圖形一定是軸對稱圖形,觀察圖形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移時,平移前后的兩個圖形組成的圖形都是軸對稱圖形,故選C.【考點】本題考查了圖形的平移、軸對稱圖形等知識,熟練掌握正方形的結構特征是解本題的關鍵.10、C【解析】【分析】根據,可以得到,,再根據等邊三角形可以計算出的度數.【詳解】解:如圖所示:根據∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質,即兩直線平行內錯角相等以及兩直線平行同位角相等;明確平行線的性質是解題的關鍵.二、填空題1、3【解析】【分析】如圖(見解析),過點D作,根據角平分線的性質可得,再利用三角形全等的判定定理得出,從而有,最后根據三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質、直角三角形全等的判定定理等知識點,通過作輔助線,構造兩個全等的三角形是解題關鍵.2、1【解析】【分析】根據等腰三角形三線合一的性質即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【詳解】∵BD=BA,BP是∠ABC的角平分線,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案為:1.【考點】本題考查等腰三角形的性質.掌握等腰三角形“三線合一”是解答本題的關鍵.3、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點】本題考查了全等三角形的判定與性質、等腰三角形的性質等知識;構造輔助線證明三角形全等是解題的關鍵.4、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據全等三角形的性質可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據等腰三角形的性質可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,5、45【解析】【詳解】解:∵DE垂直平分AB,∴AE=BE.∵BE⊥AC,∴△ABE是等腰直角三角形.∴∠BAC=∠ABE=45°.又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°.∵AB=AC,AF⊥BC,∴BF=CF又∵BE⊥AC∴EF=BF.∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°故答案為:45.6、45°【解析】【分析】根據折疊過程可知,在折疊過程中角一直是軸對稱的折疊.【詳解】在折疊過程中角一直是軸對稱的折疊,故答案為45°【考點】考核知識點:軸對稱.理解折疊的本質是關鍵.7、(-3,0)【解析】【分析】根據平面直角坐標系中兩個關于坐標軸成軸對稱的點的坐標特點,直接用假設法設出相關點即可.【詳解】解:點(m,n)關于y軸對稱點的坐標(-m,n),所以點(3,0)關于y軸對稱的點的坐標為(-3,0).故答案為:(-3,0).【考點】本題考查平面直角坐標系點的對稱性質:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.8、35【解析】【詳解】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分線DE交AC于點D,∴AD=BD,∴∠ABD=∠A=35°;故答案是35.9、40°##40度【解析】【分析】根據入射角等于反射角,可得,根據三角形內角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質,三角形內角和定理的應用,掌握軸對稱的性質是解題的關鍵.10、3【解析】【分析】先找出B'點變化的規(guī)律,可發(fā)現B'在∠ABC的角平分線上運動,故AB'取最小值時,B'點在AC中點上.【詳解】如圖,∵DE∥AC,△ABC是等邊三角形,∴△BDE是等邊三角形,折疊后的△B′DE也是等邊三角形,過B作DE的垂直平分線,∵BD=BE,B′D=B′E,∴BB′都在DE的垂直平分線上,∵AB′最小,即A到DE的垂直平分線的距離最小,此時AB′⊥BB′,∴AB′=AC=12×6=3,即AB′的最小值是3.故答案為:3.【考點】本題主要考查等邊三角形和垂直平分線的性質,掌握和理解等邊三角形性質是本題關鍵.三、解答題1、【解析】【分析】根據等腰三角形的性質,等邊對等角,又利用平行線的性質可得角度之間的關系,從而可以求解.【詳解】∵DE=CE,∴∠ECD=∠CDE.∵∠DEA是△CDE的外角,∴∠DEA=∠ECD+∠CDE=2∠ECD.∵DE=AD,∴∠DEA=∠DAE,∴∠DAE=2∠ECD.∵,∴∠CAB=∠DCA,∴∠DAE=2∠CAB.∵∠BAD=90°,∴,故答案為:.【考點】本題主要考查等腰三角形和平行線的性質,利用等腰三角形和平行線的性質得到角之間的關系是解題的關鍵.2、(1)33cm或39cm;(2)36cm.【解析】【分析】(1)根據等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解;(2)根據等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解.【詳解】(1)已知等腰三角形的兩邊長分別為9cm和15cm,那么三邊的長可能是9cm、9cm、15cm或9cm、15cm、15cm。故其周長是9+9+15=33cm或9+15+15=39cm;(2)已知等腰三角形的兩邊長分別為6cm和15cm,那么三邊的長可能是6cm、6cm、15cm或6cm、15cm、15cm.其中6cm、6cm、15cm不能組成一個三角形,故其周長是6+15+15=36cm.【考點】此題主要考查學生對等腰三角形的性質及三角形的三邊關系的掌握情況.已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.3、(1)證明見解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形內角和定理和角平分線得出的度數,再由三角形內角和定理可求出的度數,(2)在BC上取一點G使BG=BD,構造(SAS),再證明,即可得,由此求出答案;(3)延長BA到P,使AP=FC,構造(SAS),得PC=BC,,再由三角形內角和可求,,進而可得.【詳解】解:(1)、分別是與的角平分線,,,,(2)如解(2)圖,在BC上取一點G使BG=BD,由(1)得,,,∴,在與中,,∴(SAS)∴,∴,∴,∴在與中,,,,,;∵,,∴(3)如解(3)圖,延長BA到P,使AP=FC,,∴,在與中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考點】本題考查的是角平分線的性質、全等三角形的判定與性質,根據題意作出輔助線,構造出全等三角形是解答此題的關鍵.4、(1)見詳解(2)見詳解【解析】【分析】(1)根據等腰三角形三線合一的性質得到AD⊥BC,然后根據CE∥AD即可得到結論;(2)根據∠BAC=120°,得到∠BAD=60°,∠EAC=60°,由CE∥AD得到∠EAC=∠E=∠ECA=60°,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論