版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形2、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長(zhǎng)為()A.2 B. C.4 D.3、將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點(diǎn)B、D折疊后的對(duì)應(yīng)點(diǎn)分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°4、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.65、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長(zhǎng)交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長(zhǎng)為()A.5 B.2 C.2 D.37、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:28、下列說法中,不正確的是()A.四個(gè)角都相等的四邊形是矩形B.對(duì)角線互相平分且平分每一組對(duì)角的四邊形是菱形C.正方形的對(duì)角線所在的直線是它的對(duì)稱軸D.一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形9、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)為F,連結(jié)EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過點(diǎn)E作⊥DE交DG的延長(zhǎng)線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.210、若一個(gè)直角三角形的周長(zhǎng)為,斜邊上的中線長(zhǎng)為1,則此直角三角形的面積為()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、一個(gè)三角形三邊長(zhǎng)之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長(zhǎng)為30cm,則原三角形最大邊長(zhǎng)為_________cm.2、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過點(diǎn)作邊的垂線,垂足為,的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.3、如圖,在中,,,,為上的兩個(gè)動(dòng)點(diǎn),且,則的最小值是________.4、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_____.5、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長(zhǎng)為________.6、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.7、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_____.8、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對(duì)角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是_____________.9、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長(zhǎng)為__________.10、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為______.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:;(2)當(dāng)時(shí),在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.2、如圖,已知四邊形ABCD是正方形,點(diǎn)E是AD邊上的一點(diǎn)(不與點(diǎn)A,D重合),連接CE,以CE為一邊作正方形CEFG,使點(diǎn)F,G與點(diǎn)A,B在CE的兩側(cè),連接BE并延長(zhǎng),交GD延長(zhǎng)線于點(diǎn)H.(1)如圖1,請(qǐng)判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,連接BG,若AB=2,CE=,請(qǐng)你直接寫出的值.3、如圖,四邊形ABCD是一個(gè)菱形綠草地,其周長(zhǎng)為40m,∠ABC=120°,在其內(nèi)部有一個(gè)矩形花壇EFGH,其四個(gè)頂點(diǎn)恰好在菱形ABCD各邊中點(diǎn),現(xiàn)準(zhǔn)備在花壇中種植茉莉花,其單價(jià)為30元/m2,則需投資資金多少元?(取1.732)4、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點(diǎn)F,過點(diǎn)F作線段AD的垂線交AD于點(diǎn)M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.5、如圖:在中,,,點(diǎn)為的中點(diǎn),點(diǎn)為直線上的動(dòng)點(diǎn)(不與點(diǎn),重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當(dāng)點(diǎn)在邊上時(shí),運(yùn)用(1)中的結(jié)論證明;(3)如圖2,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),(2)中的結(jié)論是否依然成立?若成立,請(qǐng)加以證明,若不成立,請(qǐng)說明理由.-參考答案-一、單選題1、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運(yùn)用三角形的中位線的性質(zhì)解決中點(diǎn)四邊形問題是解本題的關(guān)鍵.2、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長(zhǎng).【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長(zhǎng).3、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點(diǎn)睛】本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.4、C【解析】【分析】先求得正方形的邊長(zhǎng),依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對(duì)稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長(zhǎng).【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長(zhǎng)為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對(duì)稱.∴BP=DP.∴PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=4.故選:C.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對(duì)稱—最短路線問題,熟知“兩點(diǎn)之間,線段最短”是解答此題的關(guān)鍵.5、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時(shí),取中點(diǎn)為點(diǎn),過點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個(gè).故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.6、D【解析】【分析】過點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問題.7、D【解析】【分析】?jī)山M對(duì)角分別相等的四邊形是平行四邊形,所以∠A和∠C是對(duì)角,∠B和∠D是對(duì)角,對(duì)角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.8、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、四個(gè)角都相等的四邊形是矩形,說法正確;B、正方形的對(duì)角線所在的直線是它的對(duì)稱軸,說法正確;C、對(duì)角線互相平分且平分每一組對(duì)角的四邊形是菱形,說法正確;D、一組對(duì)邊相等且平行的四邊形是平行四邊形,原說法錯(cuò)誤;故選:D.【點(diǎn)睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.9、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.10、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長(zhǎng)為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.二、填空題1、24【解析】【分析】由三邊長(zhǎng)之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長(zhǎng)求出三中位線長(zhǎng),推出邊長(zhǎng),再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長(zhǎng)∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.2、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過計(jì)算三角形的面積得出規(guī)律.3、【解析】【分析】過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,三點(diǎn)D、M、A′共線時(shí),最小為A′D的長(zhǎng),利用勾股定理求A′D的長(zhǎng)度即可解決問題.【詳解】解:過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點(diǎn)D、M、A′共線時(shí),A′M+DM最小為A′D的長(zhǎng),∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識(shí),構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.4、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.5、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.6、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.7、(4044,0)【解析】【分析】由題意可知:正方形的邊長(zhǎng)為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長(zhǎng)度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長(zhǎng)為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長(zhǎng)度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.8、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對(duì)角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.9、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長(zhǎng),從而可求得菱形的周長(zhǎng).【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長(zhǎng)為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長(zhǎng)等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.10、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).三、解答題1、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結(jié)論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn),(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),平行四邊形的性質(zhì),證明“是等邊三角形”是解(2)的關(guān)鍵.2、(1)BE=DG,BE⊥DG,理由見解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED=∠GDC,由余角的性質(zhì)可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定理可得出答案.【詳解】證明:(1)BE=DG,BE⊥DG,理由如下:∵四邊形ABCD是正方形,四邊形FGCE是正方形,∴CD=CB,CG=CE,∠GCE=∠DCB=90°,∴∠GCD=∠ECB,且CD=CB,CG=CE,∴△GCD≌△ECB(SAS),∴BE=DG,∠GDC=∠EBC,∵AD∥BC,∴∠EBC=∠HED=∠GDC,∵∠GDC+∠HDE=90°,∴∠HED+∠HDE=90°,∴∠DHE=90°,∴BE⊥DG;(2)連接BD,EG,如圖所示,由(1)知∠BHD=∠EHG=90°,∴DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=()2+()2=5+5=10,在Rt△BGH中,BH2+HG2=BG2,在Rt△EDH中,EH2+DH2=DE2,∴BG2+DE2=BH2+HG2+EH2+DH2=8+10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 磁頭裝配工道德水平考核試卷含答案
- 煙機(jī)電工創(chuàng)新實(shí)踐測(cè)試考核試卷含答案
- 礦產(chǎn)地質(zhì)調(diào)查員沖突解決測(cè)試考核試卷含答案
- 糖坯制造工崗前履職考核試卷含答案
- 生物制品培養(yǎng)基生產(chǎn)工發(fā)展趨勢(shì)模擬考核試卷含答案
- 塑料制品生產(chǎn)檢驗(yàn)工崗前安全培訓(xùn)考核試卷含答案
- 銀行內(nèi)部審計(jì)工作流程制度
- 酒店員工晉升與發(fā)展規(guī)劃制度
- 南丹縣車河宜樂灣養(yǎng)殖場(chǎng)擴(kuò)建項(xiàng)目環(huán)境影響報(bào)告書
- 便民春風(fēng)行動(dòng)培訓(xùn)課件
- (一模)烏魯木齊地區(qū)2026年高三年級(jí)第一次質(zhì)量監(jiān)測(cè)物理試卷(含答案)
- 高級(jí)消防設(shè)施操作員模擬試題及答案(新版)9
- 江蘇省南通市如皋市創(chuàng)新班2025-2026學(xué)年高一上學(xué)期期末數(shù)學(xué)試題+答案
- GB/T 41914.3-2025微細(xì)氣泡技術(shù)微細(xì)氣泡使用和測(cè)量通則第3部分:微細(xì)氣泡發(fā)生方法
- 2025年福建省三明市中考一模英語試題(含答案與解析)
- 內(nèi)科護(hù)理科研進(jìn)展
- 安徽省蚌埠市2024-2025學(xué)年高二上學(xué)期期末考試 物理 含解析
- 配送員派單勞務(wù)合同范本
- 退休人員返聘勞務(wù)合同
- 浙江省杭州市蕭山區(qū)2024-2025學(xué)年六年級(jí)上學(xué)期語文期末試卷(含答案)
- 《火力發(fā)電廠鍋爐技術(shù)監(jiān)督導(dǎo)則》
評(píng)論
0/150
提交評(píng)論