版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖是一圓錐的側(cè)面展開(kāi)圖,其弧長(zhǎng)為,則該圓錐的全面積為A.60π B.85π C.95π D.169π2、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能3、如圖,在中,,cm,cm.是邊上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)作于,連接,在點(diǎn)變化的過(guò)程中,線段的最小值是(
)A.1 B. C.2 D.4、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與相交于點(diǎn),則的長(zhǎng)為(
)A.2 B. C.3 D.5、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.06、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o7、丁丁和當(dāng)當(dāng)用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請(qǐng)你判斷哪個(gè)小朋友做成的帽子更高一些()A.丁丁 B.當(dāng)當(dāng) C.一樣高 D.不確定8、如圖,一個(gè)油桶靠在直立的墻邊,量得并且則這個(gè)油桶的底面半徑是()A. B. C. D.9、在平面直角坐標(biāo)系中,⊙O的半徑為2,點(diǎn)A(1,)與⊙O的位置關(guān)系是(
)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定10、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長(zhǎng)是()A.6 B.3 C.2 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在中,,,以點(diǎn)為圓心、為半徑的圓交于點(diǎn),則弧AD的度數(shù)為_(kāi)_______度.2、若⊙O的半徑為6cm,則⊙O中最長(zhǎng)的弦為_(kāi)_______厘米.3、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.4、如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_(kāi)____.5、如圖,圓錐的母線長(zhǎng)為10cm,高為8cm,則該圓錐的側(cè)面展開(kāi)圖(扇形)的弧長(zhǎng)為_(kāi)____cm.(結(jié)果用π表示)6、如圖,已知點(diǎn)C是⊙O的直徑AB上的一點(diǎn),過(guò)點(diǎn)C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.7、如圖,A、D是⊙O上的兩點(diǎn),BC是直徑,若∠D=32°,則∠OAC=_______度.8、如圖,⊙O的直徑AB=4,P為⊙O上的動(dòng)點(diǎn),連結(jié)AP,Q為AP的中點(diǎn),若點(diǎn)P在圓上運(yùn)動(dòng)一周,則點(diǎn)Q經(jīng)過(guò)的路徑長(zhǎng)是______.9、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.10、已知圓錐的高為4cm,母線長(zhǎng)為5cm,則圓錐的側(cè)面積為_(kāi)____cm2.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).2、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.3、如圖,是的高,為的中點(diǎn).試說(shuō)明點(diǎn)在以點(diǎn)為圓心的同一個(gè)圓上.4、如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.5、如圖,沿一條母線將圓錐側(cè)面剪開(kāi)并展平,得到一個(gè)扇形,若圓錐的底面圓的半徑,扇形的圓心角,求該圓錐的母線長(zhǎng).-參考答案-一、單選題1、B【解析】【分析】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長(zhǎng)公式得到=10π,解得R=12,再利用圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2π?r=10π,解得r=5,然后計(jì)算底面積與側(cè)面積的和.【詳解】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).2、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.3、A【解析】【分析】由∠AEC=90°知,點(diǎn)E在以AC為直徑的⊙M的上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時(shí),即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),BE長(zhǎng)度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點(diǎn)、可含點(diǎn),最短時(shí),即為連接與的交點(diǎn)(圖中點(diǎn)點(diǎn)),在中,,,則.,長(zhǎng)度的最小值,故選:.【考點(diǎn)】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識(shí)點(diǎn),難度偏大,解題時(shí),注意輔助線的作法.4、C【解析】【分析】過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進(jìn)而AD=AB-BD即可求解.【詳解】解:過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點(diǎn)】本題考查了直角三角形30°角所對(duì)直角邊等于斜邊的一半,垂徑定理等知識(shí)點(diǎn),熟練掌握垂徑定理是解決本題的關(guān)鍵.5、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.6、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.7、B【解析】【分析】由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當(dāng)當(dāng)?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當(dāng)當(dāng)?shù)膆,∴由勾股定理可得當(dāng)當(dāng)做成的圓錐形的帽子更高一些.故選:B.【考點(diǎn)】本題考查扇形作圓錐帽子的應(yīng)用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關(guān)系,根據(jù)勾股定理確定出當(dāng)當(dāng)?shù)拿弊痈呤墙忸}關(guān)鍵.8、C【解析】【分析】根據(jù)切線的性質(zhì),連接過(guò)切點(diǎn)的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點(diǎn)A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點(diǎn)】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).9、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),求出OA=2,根據(jù)點(diǎn)與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點(diǎn)A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點(diǎn)A在⊙O上.故選:A.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,點(diǎn)和圓的位置關(guān)系是由點(diǎn)到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時(shí),點(diǎn)在圓外;(2)當(dāng)時(shí),點(diǎn)在圓上;(3)當(dāng)時(shí),點(diǎn)在圓內(nèi).10、C【解析】【分析】如圖,過(guò)作于過(guò)作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過(guò)作于過(guò)作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.二、填空題1、【解析】【分析】由三角形內(nèi)角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度數(shù)可求,可解.【詳解】連接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度數(shù)是50度.【考點(diǎn)】本題考查了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.2、12【解析】【詳解】解:∵⊙O的半徑為6cm,∴⊙O的直徑為12cm,即圓中最長(zhǎng)的弦長(zhǎng)為12cm.故答案為12.3、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點(diǎn)】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識(shí)點(diǎn).4、72°【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【考點(diǎn)】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.5、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開(kāi)圖為扇形,結(jié)合圓周長(zhǎng)公式進(jìn)行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點(diǎn)】本題考查了圓錐的計(jì)算,解答本題的關(guān)鍵是掌握?qǐng)A錐側(cè)面展開(kāi)圖是個(gè)扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.6、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關(guān)系定理求出∠AOD=35°,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計(jì)算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點(diǎn)】本題考查了圓心角、弧、弦的關(guān)系定理:在同圓和等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.7、58【解析】【分析】根據(jù)∠D的度數(shù),可以得到∠ABC的度數(shù),然后根據(jù)BC是直徑,從而可以得到∠BAC的度數(shù),然后可以得到∠OCA的度數(shù),再根據(jù)OA=OC,從而可以得到∠OAC的度數(shù).【詳解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC是直徑∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案為58.【考點(diǎn)】本題考查了圓周角定理,圓心角、弧、弦的關(guān)系.解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.8、【解析】【分析】連接OQ,以O(shè)A為直徑作⊙C,確定出點(diǎn)Q的運(yùn)動(dòng)路徑即可求得路徑長(zhǎng).【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過(guò)圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點(diǎn)Q在以O(shè)A為直徑的⊙C上.∴當(dāng)點(diǎn)P在⊙O上運(yùn)動(dòng)一周時(shí),點(diǎn)Q在⊙C上運(yùn)動(dòng)一周.∵AB=4,∴OA=2.∴⊙C的周長(zhǎng)為.∴點(diǎn)Q經(jīng)過(guò)的路徑長(zhǎng)為.故答案為:【考點(diǎn)】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長(zhǎng)的計(jì)算等知識(shí)點(diǎn),熟知相關(guān)定理及其推論是解題的基礎(chǔ),確定點(diǎn)Q的運(yùn)動(dòng)路徑是解題的關(guān)鍵.9、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.10、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長(zhǎng),把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),圓錐的側(cè)面積等于“π×底面半徑×母線長(zhǎng)”.三、解答題1、(1)證明見(jiàn)解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問(wèn)題;(2)在Rt△CEB中,求出∠C即可解決問(wèn)題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點(diǎn)】主要考查了圓周角定理、垂徑定理、直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).2、詳見(jiàn)解析.【解析】【詳解】試題分析:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年深圳單招機(jī)電一體化技術(shù)經(jīng)典題集含答案
- 2026年河北單招計(jì)算機(jī)類軟件技術(shù)專業(yè)技能實(shí)操經(jīng)典題含答案含編程基礎(chǔ)
- 2026年廈門單招城市軌道交通運(yùn)營(yíng)管理題庫(kù)含答案
- 2026年檔案修復(fù)工作績(jī)效考核評(píng)估
- 2026年成都軌道公司會(huì)計(jì)工作的考核與評(píng)價(jià)機(jī)制
- 2026年法務(wù)主管助理面試題及答案
- 2026年設(shè)備安全員安全生產(chǎn)知識(shí)考試含答案
- 機(jī)場(chǎng)場(chǎng)務(wù)員達(dá)標(biāo)能力考核試卷含答案
- 城市軌道交通設(shè)備調(diào)度員崗前競(jìng)爭(zhēng)分析考核試卷含答案
- 2026年旅游行業(yè)職業(yè)健康管理面試題及解答指南
- 2025天津大學(xué)管理崗位集中招聘15人筆試備考重點(diǎn)題庫(kù)及答案解析
- 2026年人教版(2024)初中美術(shù)七年級(jí)上冊(cè)期末綜合測(cè)試卷及答案(四套)
- 供應(yīng)飯菜應(yīng)急預(yù)案(3篇)
- 2026年遼寧理工職業(yè)大學(xué)單招職業(yè)適應(yīng)性測(cè)試題庫(kù)及參考答案詳解
- 2026蘇州大學(xué)附屬第二醫(yī)院(核工業(yè)總醫(yī)院)護(hù)理人員招聘100人(公共基礎(chǔ)知識(shí))測(cè)試題帶答案解析
- 2026中國(guó)儲(chǔ)備糧管理集團(tuán)有限公司湖北分公司招聘33人筆試歷年題庫(kù)及答案解析(奪冠)
- 《馬原》期末復(fù)習(xí)資料
- 食品生產(chǎn)企業(yè)GMP培訓(xùn)大綱
- 《圖形創(chuàng)意與應(yīng)用》全套教學(xué)課件
- 科研成果評(píng)審專家意見(jiàn)模板
- 工程教育國(guó)際化路徑-洞察及研究
評(píng)論
0/150
提交評(píng)論