版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省遷安市中考數(shù)學高分題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm2、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉60°,射線BD與射線CE交于點P,在這個旋轉過程中有下列結論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、下列說法正確的是()A.擲一枚質(zhì)地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復試驗,可以用頻率估計概率.4、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.5、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°二、多選題(5小題,每小題3分,共計15分)1、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧2、下列命題正確的是(
)A.菱形既是中心對稱圖形又是軸對稱圖形B.的算術平方根是5C.如果一個多邊形的各個內(nèi)角都等于108°,則這個多邊形是正五邊形D.如果方程有實數(shù)根,則實數(shù)3、下列關于x的一元二次方程中,沒有兩個不相等的實數(shù)根的方程是(
)A. B. C. D.4、下列命題中不正確的命題有(
)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=35、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如果點與點B關于原點對稱,那么點B的坐標是______.2、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.3、拋物線的圖象和軸有交點,則的取值范圍是______.4、已知關于x的一元二次方程的一個根比另一個根大2,則m的值為_____.5、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.四、簡答題(2小題,每小題10分,共計20分)1、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O,Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.2、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.五、解答題(4小題,每小題10分,共計40分)1、受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進價、售價和每日銷量如表格所示:進價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據(jù)市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現(xiàn)A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數(shù)關系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當時,每天的最大利潤為229200元,求a的值.2、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結果;(2)求取出的兩個小球標號和等于5的概率.3、閱讀下面內(nèi)容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為n(n-3).如果一個n邊形共有20條對角線,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴這個n邊形是八邊形.根據(jù)以上內(nèi)容,問:(1)若一個多邊形共有9條對角線,求這個多邊形的邊數(shù);(2)小明說:“我求得一個n邊形共有10條對角線”,你認為小明同學的說法正確嗎?為什么?4、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關系,并說明理由.-參考答案-一、單選題1、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.2、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關鍵.3、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質(zhì)地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質(zhì):對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務發(fā)生的概率是本題關鍵.4、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.5、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.二、多選題1、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.2、AD【解析】【分析】利用菱形的對稱性、算術平方根的定義、多邊形的內(nèi)角和、一元二次方程根的判別式等知識分別判斷后即可確定正確的選項.【詳解】解:A、菱形既是中心對稱圖形又是軸對稱圖形,故命題正確,符合題意;B、的算術平方根是,故命題錯誤,不符合題意;C、若一個多邊形的各內(nèi)角都等于108°,各邊也相等,則它是正五邊形,故命題錯誤,不符合題意;D、對于方程,當a=0時,方程,變?yōu)?x+1=0,有實數(shù)根,當a≠0時,時,即,方程有實數(shù)根,綜上所述,方程有實數(shù)根,則實數(shù),故命題正確,符合題意.故選:AD.【考點】考查了命題與定理的知識,解題的關鍵是了解算術平方根的定義、菱形的對稱性、多邊形的內(nèi)角和、一元二次方程根的判別式等知識,難度不大.3、ABC【解析】【分析】根據(jù)根的判別式Δ=b2-4ac的值的符號,可以判定個方程實數(shù)根的情況,注意排除法在解選擇題中的應用.【詳解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程沒有實數(shù)根,故本選項符合題意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有兩個相等的實數(shù)根,故本選項符合題意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程沒有實數(shù)根,故本選項符合題意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的判別式的知識.此題比較簡單,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與Δ=b2-4ac有如下關系:①當Δ>0時,方程有兩個不相等的兩個實數(shù)根;②當Δ=0時,方程有兩個相等的兩個實數(shù)根;③當Δ<0時,方程無實數(shù)根.4、ABCD【解析】【分析】根據(jù)方程、方程的解的有關定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關鍵.5、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.三、填空題1、【分析】關于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數(shù);進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關于原點對稱的點的坐標知識.解題的關鍵在于熟練記憶關于原點對稱的點坐標中相對應的坐標互為相反數(shù).2、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.3、且【解析】【分析】由題意知,,計算求解即可.【詳解】解:由題意知,解得故答案為:且.【考點】本題考查了二次函數(shù)與軸的交點個數(shù).解題的關鍵在于熟練掌握二次函數(shù)與軸的交點個數(shù).4、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關鍵是熟知因式分解法的運用.5、【分析】先畫樹狀圖列出所有等可能結果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結果有4種結果,∴關于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關鍵.四、簡答題1、(1)y=﹣;(2)點R的縱坐標為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設點R的縱坐標為n,則QN=|n|,分兩種情況,根據(jù)相似關系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設其橫坐標為m,然后用其分別表示出相關點的坐標,并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應邊上的高之比也等于相似比,從而建立關于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設點R的縱坐標為n,則QN=|n|,如果△AOK與以O,Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點,∴設點C坐標為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設CE解析式為:y=﹣x+b,將點E坐標代入得b=.∴CE解析式為:y=﹣x﹣,∵點N的縱坐標是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點N坐標為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點C坐標為(﹣1,3).答:點C坐標為(﹣1,3).【考點】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項知識點與能力,難度較大.2、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應用,解決問題的關鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.五、解答題1、(1)(),且x為整數(shù);(2),且x為整數(shù);(3)a=30【解析】【分析】(1)根據(jù)題意列函數(shù)關系式和不等式組,于是得到結論;(2)根據(jù)題意列方程和不等式,于是得到結論;(3)根據(jù)題意列函數(shù)關系式,然后根據(jù)二次函數(shù)的性質(zhì)即可得到結論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數(shù);(2)的取值范圍為.理由如下:,當時,,,,解得:或.要使,得;,;(3)設捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當時,隨的增大而增大,當時,最大,,解得.【考點】本題考查了二次函數(shù)的應用,一元一次不等式的應用,列函數(shù)關系式等等,最大銷售利潤的問題常利用函數(shù)的增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 常用護理操作并發(fā)癥預防與處理
- 護理法律法規(guī)速覽
- 干性皮膚的急救護理方法
- 2025年辦公室智能窗簾采購安裝協(xié)議
- 城市海綿體建設
- 2025年智能眼鏡產(chǎn)業(yè)園用戶體驗設計
- 2025年智能花盆土壤傳感技術優(yōu)化實踐研究
- 2026 年中職康復技術(康復訓練)試題及答案
- 餐飲的考試題及答案
- 基于ArcGIS的MLP縣滑坡地質(zhì)災害易發(fā)性評價
- 建筑材料采購投標方案(技術標)
- 小步舞詳解(教師版)
- 光伏支架安裝技術交底
- 節(jié)能基本情況表(打印)
- 創(chuàng)新思維與創(chuàng)業(yè)實驗-東南大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 電動車轉讓合同協(xié)議書電子版
- YS/T 1019-2015氯化銣
- GB/T 39081-2020電阻點焊及凸焊接頭的十字拉伸試驗方法
- GB/T 25390-2010風力發(fā)電機組球墨鑄鐵件
- GA 38-2021銀行安全防范要求
評論
0/150
提交評論