版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在方格紙上建立的平面直角坐標(biāo)系中,將繞點按順時針方向旋轉(zhuǎn)90°,得到,則點的坐標(biāo)為(
).A. B.C. D.2、如圖下面圖形既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、如圖,在中,,將繞點C逆時針旋轉(zhuǎn)得到,點A,B的對應(yīng)點分別為D,E,連接.當(dāng)點A,D,E在同一條直線上時,下列結(jié)論一定正確的是(
)A. B. C. D.4、2022年新年賀詞中提到“人不負(fù)青山,青山定不負(fù)人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
)A. B. C. D.5、如圖,菱形對角線交點與坐標(biāo)原點重合,點,則點的坐標(biāo)為(
)A. B. C. D.6、將拋物線先繞坐標(biāo)原點旋轉(zhuǎn),再向右平移個單位長度,所得拋物線的解析式為(
)A. B.C. D.7、如圖,將斜邊為4,且一個角為30°的直角三角形AOB放在直角坐標(biāo)系中,兩條直角邊分別與坐標(biāo)軸重合,D為斜邊的中點,現(xiàn)將三角形AOB繞O點順時針旋轉(zhuǎn)120°得到三角形EOC,則點D對應(yīng)的點的坐標(biāo)為()A.(1,﹣) B.(,1) C.(2,﹣2) D.(2,﹣2)8、如圖,將繞點A按順時針旋轉(zhuǎn)一定角度得到,點B的對應(yīng)點D恰好落在BC邊上,若,,則CD的長為(
).A. B. C. D.19、如圖,在方格紙中,將繞點按順時針方向旋轉(zhuǎn)90°后得到,則下列四個圖形中正確的是()A. B.C. D.10、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中,每個小正方形的邊長均為1,點A,B,C的坐標(biāo)分別為,,.是關(guān)于軸的對稱圖形,將繞點逆時針旋轉(zhuǎn)180°,點的對應(yīng)點為M,則點M的坐標(biāo)為________.2、下列4種圖案中,是中心對稱圖形的有_____個.3、如圖,將矩形繞點逆時針旋轉(zhuǎn),連接,,當(dāng)為______時.4、如圖,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC為一邊作正方形BDEC設(shè)正方形的對稱中心為O,連接AO,則AO=_____.5、在4×4的方格中有五個同樣大小的正方形如圖擺放,移動其中一個正方形到空白方格中,與其余四個正方形組成的新圖形是一個軸對稱圖形,這樣的移法共有__種.6、將點繞原點O順時針旋轉(zhuǎn)得到點,則點落在第____________象限.7、如圖,在平面直角坐標(biāo)系中,點P(1,1),N(2,0),△MNP和△M1N1P1的頂點都在格點上,△MNP與△M1N1P1是關(guān)于某一點中心對稱,則對稱中心的坐標(biāo)為_____.8、兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=13,CD=7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)a(0α90°),如圖2所示.當(dāng)BD與CD在同一直線上(如圖3)時,則△ABC的面積為____.9、如圖,兩塊完全一樣的含30°角的三角板完全重疊在一起,若繞長直角邊中點M轉(zhuǎn)動,使上面一塊三角板的斜邊剛好經(jīng)過下面一塊三角板的直角頂點,已知∠A=30°,BC=2,則此時兩直角頂點C,C'間的距離是_____.10、如圖,正方形ABCD的邊長是5,E是邊BC上一點且BE=2,F(xiàn)為邊AB上的一個動點,連接EF,以EF為邊向右作等邊三角形EFG,連接CG,則CG長的最小值為______.三、解答題(6小題,每小題5分,共計30分)1、問題情境:數(shù)學(xué)活動課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動,△ABC和△DEC是兩個全等的直角三角形紙片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解決問題:(1)如圖1,智慧小組將△DEC繞點C順時針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點D恰好落在AB邊上時,DE∥AC,請你幫他們證明這個結(jié)論;(2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,當(dāng)△DEC繞點C繼續(xù)旋轉(zhuǎn)到如圖2所示的位置時,連接AE、AD、BD,他們提出S△BDC=S△AEC,請你幫他們驗證這一結(jié)論是否正確,并說明理由.2、已知:如圖①,在矩形ABCD中,,垂足是E,點F是點關(guān)于AB的對稱點,連接AF、BF.(1)直接求出:__;__;(2)若將沿著射線BD方向平移,設(shè)平移的距離為(平移距離指點B沿BD方向所經(jīng)過的線段長度),點F分別平移到線段AB、AD上時,求出相應(yīng)的m的值.(3)如圖②,將繞點B順時針旋轉(zhuǎn)一個角,記旋轉(zhuǎn)中的為,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線AD交于點P,與直線BD交于點是否存在這樣的P、Q兩點,使為等腰三角形?若存在,直接寫出此時DQ的長;若不存在,請說明理由.3、如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系內(nèi),的三個頂點分別為,,.(1)畫出關(guān)于原點對稱的,并寫出點的坐標(biāo);(2)畫出繞點順時針旋轉(zhuǎn)后得到的,并寫出點的坐標(biāo).4、將矩形ABCD繞著點C按順時針方向旋轉(zhuǎn)得到矩形FECG,其中點E與點B,點G與點D分別是對應(yīng)點,連接BG.(1)如圖,若點A,E,D第一次在同一直線上,BG與CE交于點H,連接BE.①求證:BE平分∠AEC.②取BC的中點P,連接PH,求證:PHCG.③若BC=2AB=2,求BG的長.(2)若點A,E,D第二次在同一直線上,BC=2AB=4,直接寫出點D到BG的距離.5、如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).(1)畫出△ABC關(guān)于點C成中心對稱的△A'B'C(其中A'是點A的對應(yīng)點,B'是點B的對應(yīng)點);(2)用無刻度的直尺作出一個格點O,使得OA=OB.6、圖1、圖2分別是7×7的正方形網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,點A、B在小正方形的頂點上,僅用無刻度直尺完成下列作圖.(1)在圖1中確定點C、D(點C、D在小正方形的頂點上),并畫出以AB為對角線的四邊形,使其是中心對稱圖形,但不是軸對稱圖形,且面積為15;(2)在圖2中確定點E、F(點E、F在小正方形的頂點上),并畫出以AB為對角線的四邊形,使其既是軸對稱圖形,又是中心對稱圖形,且面積為15.-參考答案-一、單選題1、A【解析】【分析】根據(jù)網(wǎng)格結(jié)構(gòu)作出旋轉(zhuǎn)后的圖形,然后根據(jù)平面直角坐標(biāo)系寫出點B′的坐標(biāo)即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標(biāo)與圖形變化,熟練掌握網(wǎng)格結(jié)構(gòu),作出圖形是解題的關(guān)鍵.2、B【解析】【詳解】解:A、是軸對稱圖形,但不是中心對稱圖形,故本選項不符合題意;B、既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;C、是中心對稱圖形,但不是軸對稱圖形,故本選項不符合題意;D、是軸對稱圖形,但不是中心對稱圖形,故本選項不符合題意;故選:B【考點】本題主要考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形是解題的關(guān)鍵.3、D【解析】【分析】由旋轉(zhuǎn)可知,即可求出,由于,則可判斷,即A選項錯誤;由旋轉(zhuǎn)可知,由于,即推出,即B選項錯誤;由三角形三邊關(guān)系可知,即可推出,即C選項錯誤;由旋轉(zhuǎn)可知,再由,即可證明為等邊三角形,即推出.即可求出,即證明,即D選項正確;【詳解】由旋轉(zhuǎn)可知,∵點A,D,E在同一條直線上,∴,∵,∴,故A選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵為鈍角,∴,∴,故B選項錯誤,不符合題意;∵,∴,故C選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵,∴為等邊三角形,∴.∴,∴,故D選項正確,符合題意;故選D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),三角形三邊關(guān)系,等邊三角形的判定和性質(zhì)以及平行線的判定.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.4、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:D.【考點】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.5、B【解析】【分析】根據(jù)菱形的中心對稱性,A、C坐標(biāo)關(guān)于原點對稱,利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對稱圖形,且對稱中心為原點,∴A、C坐標(biāo)關(guān)于原點對稱,∴C的坐標(biāo)為,故選C.【考點】本題考查了菱形的中心對稱性質(zhì),原點對稱,熟練掌握菱形的性質(zhì),關(guān)于原點對稱點的坐標(biāo)特點是解題的關(guān)鍵.6、C【解析】【分析】先根據(jù)點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求出旋轉(zhuǎn)后的拋物線的解析式,再根據(jù)二次函數(shù)的圖象平移的規(guī)律即可得.【詳解】將拋物線的頂點式為則其與x軸的交點坐標(biāo)為,頂點坐標(biāo)為點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律:橫、縱坐標(biāo)均變?yōu)橄喾磾?shù)則繞坐標(biāo)原點旋轉(zhuǎn)后,所得拋物線與x軸的交點坐標(biāo)為,頂點坐標(biāo)為設(shè)旋轉(zhuǎn)后所得拋物線為將點代入得:,解得即旋轉(zhuǎn)后所得拋物線為則再向右平移個單位長度,所得拋物線的解析式為即故選:C.【考點】本題考查了點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的圖象平移的規(guī)律,熟練掌握坐標(biāo)旋轉(zhuǎn)變換規(guī)律和二次函數(shù)的圖象平移規(guī)律是解題關(guān)鍵.7、A【解析】【分析】根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,由旋轉(zhuǎn)的性質(zhì)得到∠DOD′=120°,根據(jù)AD=BD=OD=2,得到∠AOD度數(shù),進(jìn)而求出∠MOD′度數(shù)為30°,在直角三角形OMD′中求出OM與MD′的長,即可確定出D′的坐標(biāo).【詳解】解:根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,∴∠DOD′=120°,∵D為斜邊AB的中點,∴AD=OD=AB=2,∴∠BAO=∠DOA=30°,∴∠MOD′=30°,在Rt△OMD′中,OD′=OD=2,∴MD′=1,OM==,則D的對應(yīng)點D′的坐標(biāo)為(1,﹣),故選:A.【考點】此題考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊中線等于斜邊的一半的性質(zhì),30度角所對的直角邊等于斜邊的一半的性質(zhì),勾股定理,正確掌握旋轉(zhuǎn)的性質(zhì)得到對應(yīng)的旋轉(zhuǎn)圖形進(jìn)行解答是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)直角三角形兩銳角互余可得∠C=30°,根據(jù)含30°角的直角三角形的性質(zhì)可求出BC的長,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AD,然后判斷出△ABD是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得BD=AB,然后根據(jù)CD=BC-BD計算即可得解.【詳解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋轉(zhuǎn)的性質(zhì)得,AB=AD,∴△ABD是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),含30°角的直角三角形的性質(zhì),等邊三角形的判定與性質(zhì),熟記性質(zhì)并判斷出△ABD是等邊三角形是解題的關(guān)鍵.9、B【解析】【分析】根據(jù)繞點按順時針方向旋轉(zhuǎn)90°逐項分析即可.【詳解】A、是由關(guān)于過B點與OB垂直的直線對稱得到,故A選項不符合題意;B、是由繞點按順時針方向旋轉(zhuǎn)90°后得到,故B選項符合題意;C、與對應(yīng)點發(fā)生了變化,故C選項不符合題意;D、是由繞點按逆時針方向旋轉(zhuǎn)90°后得到,故D選項不符合題意.故選:B.【考點】本題考查旋轉(zhuǎn)變換.解題的關(guān)鍵是弄清旋轉(zhuǎn)的方向和旋轉(zhuǎn)的度數(shù).10、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題1、【解析】【分析】根據(jù)題意,畫出旋轉(zhuǎn)后圖形,即可求解【詳解】解:如圖,將繞點逆時針旋轉(zhuǎn)180°,所以點的對應(yīng)點為M的坐標(biāo)為.故答案為:【考點】本題考查平面直角坐標(biāo)系內(nèi)圖形的對稱,旋轉(zhuǎn),解題關(guān)鍵是理解對稱旋轉(zhuǎn)的含義,并結(jié)合網(wǎng)格解題.2、2【解析】【分析】根據(jù)中心對稱圖形的概念即可求解.【詳解】第1個圖形,是中心對稱圖形,符合題意;第2個圖形,不是中心對稱圖形,不符合題意;第3個圖形,是中心對稱圖形,符合題意;第4個圖形,不是中心對稱圖形,不符合題意.故答案為:2.【考點】本題考查了中心對稱圖形,掌握好中心對稱圖形,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、60【解析】【分析】連接,過作于,交于,根據(jù)等腰三角形的性質(zhì)與判定得,,進(jìn)而得到垂直平分,證得為等邊三角形便可.【詳解】解:連接,過作于,交于,如下圖,要使,則,,,,,四邊形和四邊形都是矩形,,垂直平分,,由旋轉(zhuǎn)性質(zhì)知,,,是等邊三角形,,故當(dāng)為時,.故答案為:.【考點】本題主要考查了矩形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,關(guān)鍵是證明垂直平分.4、;【解析】【分析】連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,F(xiàn)B=AC=6,進(jìn)而得到AF=8+6=14,∠FAO=45°,根據(jù)AO=AF×cos45°進(jìn)行計算即可.【詳解】解:連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,∵O是正方形DBCE的對稱中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四邊形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,,∴△AOC≌△FOB(ASA),∴AO=FO,F(xiàn)B=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×=.故答案為.【考點】本題考查了正方形的性質(zhì)和全等三角形的判定與性質(zhì).本題的關(guān)鍵是通過作輔助線來構(gòu)建全等三角形,然后將已知和所求線段轉(zhuǎn)化到直角三角形中進(jìn)行計算.5、13【解析】【分析】根據(jù)軸對稱圖形的性質(zhì),分別移動一個正方形,即可得出符合要求的答案.【詳解】如圖所示:故一共有13畫法.6、四【解析】【分析】畫出圖形,利用圖象解決問題即可.【詳解】解:如圖,所以在第四象限,故答案為:四.【考點】本題考查坐標(biāo)與圖形變化—旋轉(zhuǎn),解題的關(guān)鍵是正確畫出圖形,屬于中考??碱}型.7、(2,1)【解析】【分析】觀察圖形,根據(jù)中心對稱的性質(zhì)即可解答.【詳解】∵點P(1,1),N(2,0),∴由圖形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分,∴對稱中心的坐標(biāo)為(2,1),故答案為(2,1).【考點】本題考查了中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形能夠完全重合;②關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分.8、30【解析】【分析】設(shè)AO與BC的交點為點G,根據(jù)等腰直角三角形的性質(zhì)證△AOC≌△BOD,進(jìn)而得出△ABC是直角三角形,設(shè)AC=x,BC=x+7,由勾股定理求出x,再計算△ABC的面積即可.【詳解】解:設(shè)AO與BC的交點為點G,∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGC,∴∠CAO+∠AGC=90°,∴∠ACG=90°,∴CG⊥AC,設(shè)AC=x,則BD=AC=x,BC=x+7,∵BD、CD在同一直線上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S=,故答案為:30.【考點】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的性質(zhì)解決問題.9、【解析】【分析】先求解,由旋轉(zhuǎn)的性質(zhì)可得可證是等邊三角形,即可求的長.【詳解】解:如圖,連接,∵點M是AC中點,∴AM=CM=,∵旋轉(zhuǎn),∴∴,∴,∴,∴是等邊三角形∴故答案為:【考點】本題考查了等邊三角形的判定,勾股定理的應(yīng)用,旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是解本題的關(guān)鍵.10、【解析】【分析】由題意分析可知,點F為主動點,運動軌跡是線段AB,G為從動點,所以以點E為旋轉(zhuǎn)中心構(gòu)造全等關(guān)系,得到點G的運動軌跡,也是一條線段,之后通過垂線段最短構(gòu)造直角三角形獲得CG最小值.【詳解】解:由題意可知,點F是主動點,點G是從動點,點F在線段AB上運動,點G的軌跡也是一條線段,將△EFB繞點E旋轉(zhuǎn)60°,使EF與EG重合,得到△EFB≌△EGH,從而可知△EBH為等邊三角形,∵四邊形ABCD是正方形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴點G在垂直于HE的直線HN上,延長HG交DC于點N,過點C作CM⊥HN于M,則CM即為CG的最小值,過點E作EP⊥CM于P,可知四邊形HEPM為矩形,∠PEC=30°,∠EPC=90°,則CM=MP+CP=HE+EC=2+=,故答案為:.【考點】本題考查了線段最值問題,分清主動點和從動點,通過旋轉(zhuǎn)構(gòu)造全等,從而判斷出點G的運動軌跡,是本題的關(guān)鍵,之后運用垂線段最短,構(gòu)造圖形計算,是最值問題中比較典型的類型.三、解答題1、(1)證明見解析;(2)正確,理由見解析【解析】【分析】(1)如圖1中,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行進(jìn)行解答;(2)如圖2中,作DM⊥BC于M,AN⊥EC交EC的延長線于N.根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明.【詳解】解:(1)如圖1中,∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等邊三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)結(jié)論正確,理由如下:如圖2中,作DM⊥BC于M,AN⊥EC交EC的延長線于N.∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S△BDC=S△AEC.【考點】本題屬于幾何變換綜合題,主要考查了全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì)的綜合應(yīng)用,添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.2、(1);(2);(3)存在,DQ的長度分別為4或或或.【解析】【分析】(1)利用矩形性質(zhì)、勾股定理及三角形面積公式求解;(2)依題意畫出圖形,如圖所示,利用平移性質(zhì),確定圖形中的等腰三角形,分別畫出圖形,對于各種情形分別進(jìn)行計算即可;(3)在旋轉(zhuǎn)過程中,等腰由4種情形分別進(jìn)行計算即可.【詳解】解:(1)四邊形ABCD是矩形,,在中,,由勾股定理得:,,,點F是點E關(guān)于AB的對稱點,,,,,在中,,由勾股定理得:,故答案為:;;設(shè)平移中的三角形為,如圖所示:由對稱點性質(zhì)可知,,由平移性質(zhì)可知,,,.當(dāng)點落在AB上時,,,,,即;當(dāng)點落在AD上時,,,,,,又易知,為等腰三角形,,,即.綜上所述,當(dāng)點F分別平移到線段AB、AD上時,相應(yīng)的m的值分別為,;存在.理由如下:在旋轉(zhuǎn)過程中,等腰依次有以下4種情形:如圖所示,點Q落在BD延長線上,且,則,,,,,,.在中,由勾股定理得:.;如圖所示,點Q落在BD上,且,則,,,,則此時點落在BC邊上.,,,.在中,由勾股定理得:,即:,解得:,;如圖所示,點Q落在BD上,且,則.,,.,.,,,,.在中,由勾股定理得:,;如圖所示,點Q落在BD上,且,則.,,,,,.綜上所述,存在4組符合條件的點P、點Q,使為等腰三角形;DQ的長度分別為4或或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 燃?xì)饩咧圃旃ぐ踩R競賽模擬考核試卷含答案
- 鉭鈉還原火法冶煉工崗前工作合規(guī)考核試卷含答案
- 淡水水生植物繁育工安全知識模擬考核試卷含答案
- 腦網(wǎng)絡(luò)分析在精神疾病中的應(yīng)用-洞察及研究
- 2025長沙工程機(jī)械行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 記號筆制造工保密水平考核試卷含答案
- 2025長三角新材料產(chǎn)業(yè)集聚區(qū)行業(yè)市場供需研究及投資周期規(guī)劃分析報告
- 港口技術(shù)創(chuàng)新對可持續(xù)發(fā)展的影響研究-洞察及研究
- 2025郵政行業(yè)市場競爭態(tài)勢深度解析及服務(wù)創(chuàng)新與發(fā)展方向規(guī)劃綜合報告
- 2025郵政無人機(jī)配送行業(yè)市場供需分析與發(fā)展趨勢投資評估規(guī)劃分析研究報告
- 高層建筑火災(zāi)風(fēng)險評估與管理策略研究
- 綜合管線探挖安全專項施工方案
- GB/T 37507-2025項目、項目群和項目組合管理項目管理指南
- 華為管理手冊-新員工培訓(xùn)
- 社保補繳差額協(xié)議書
- 2025成人有創(chuàng)機(jī)械通氣氣道內(nèi)吸引技術(shù)操作
- 2025年江蘇省職業(yè)院校技能大賽高職組(人力資源服務(wù))參考試題庫資料及答案
- 東北農(nóng)業(yè)大學(xué)教案課程肉品科學(xué)與技術(shù)
- 成都市金牛區(qū)2025屆初三一診(同期末考試)語文試卷
- 如何應(yīng)對網(wǎng)絡(luò)暴力和欺凌行為
- 現(xiàn)代技術(shù)服務(wù)費合同1
評論
0/150
提交評論