考點解析人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試練習題(含答案詳解)_第1頁
考點解析人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試練習題(含答案詳解)_第2頁
考點解析人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試練習題(含答案詳解)_第3頁
考點解析人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試練習題(含答案詳解)_第4頁
考點解析人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試練習題(含答案詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.2、如圖,菱形ABCD的邊長為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點E,則點E到AC的距離為()A.1 B. C..2 D.23、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°4、在平面直角坐標系中,平行四邊形ABCD的頂點A、B、D的坐標分別是(0,0),(5,0),(2,3),則頂點C的坐標是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)5、平行四邊形中,,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.2、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動點,F(xiàn)、G為AD邊上兩個動點,且∠FEG=30°,則線段FG的長度最大值為_____.3、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.4、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.5、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.三、解答題(5小題,每小題10分,共計50分)1、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).2、如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.試畫出一個頂點都在格點上,且面積為10的正方形.3、在如圖所示的4×3網(wǎng)格中,每個小正方形的邊長均為1,正方形頂點叫格點,連接兩個網(wǎng)格格點的線段叫網(wǎng)格線段.點A固定在格點上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請在網(wǎng)格中畫出頂點在格點上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.4、如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E,CD=5,DB=13,求BE的長.

5、(閱讀材料)材料一:我們在小學學習過正方形,知道:正方形的四條邊都相等,四個角都是直角;材料二:如圖1,由一個等腰直角三角形和一個正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進行證明;(3)設(shè)圖中兩個小正方形的面積分別為S1和S2,若,求S1和S2的值.-參考答案-一、單選題1、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學習應用.2、C【解析】【分析】根據(jù)題意連接BD,過點E作EF⊥AC于點F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進而求出A′E,再利用30度角所對直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點E作EF⊥AC于點F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).3、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計算的應用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).4、A【解析】【分析】利用平行四邊形的對邊平行且相等的性質(zhì),先利用對邊平行,得到D點和C點的縱坐標相等,再求出CD=AB=5,得到C點橫坐標,最后得到C點的坐標.【詳解】解:四邊形ABCD為平行四邊形。且。C點和D的縱坐標相等,都為3.A點坐標為(0,0),B點坐標為(5,0),.D點坐標為(2,3),C點橫坐標為,點坐標為(7,3).故選:A.【點睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長求點坐標,其中,熟練應用平行四邊形對邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).二、填空題1、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點睛】本題考查勾股定理的知識,有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進行靈活的結(jié)合和應用.2、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點睛】本題考查了四邊形中動點問題,圖解法數(shù)學思想依據(jù)是數(shù)形結(jié)合思想.它的應用能使復雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動點.如何合理運用各動點之間的關(guān)系,同學們往往缺乏思路,常常導致思維混亂.實際上求解特殊四邊形的動點問題,關(guān)鍵是是利用圖解法抓住它運動中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運動變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進行討論,就能找到解決的途徑,有效避免思維混亂.3、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關(guān)鍵.4、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.5、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.三、解答題1、(1)見解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結(jié)論;

(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關(guān)鍵.2、見解析【分析】根據(jù)正方形的面積為10,可得其邊長為,據(jù)此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.

【點睛】本題主要考查了應用與設(shè)計作圖以及勾股定理的運用,首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應幾何圖形的性質(zhì)和基本作圖的方法作圖.3、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進而求出即可;(2)根據(jù)要求周長邊長為的菱形即可.【詳解】解:(1)由題意得:a=,b=2,

∴;

故答案為:,2,;(2)如圖1,2中,菱形ABCD即為所求.

菱形ABCD的面積為=×4×2=4或菱形ABCD的面積=×=5,

故答案為:4或5.【點睛】本題考查作圖-應用與設(shè)計作圖,無理數(shù),勾股定理,菱形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,正確作出圖形解決問題.4、【分析】由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE,依據(jù)勾股定理求得BC的長,由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長,從而得到BE的長.【詳解】解:∵四邊形ABCD為矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性質(zhì)可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE與△BEF中,∴△DCE≌△BF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論