解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試卷(解析版)_第1頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試卷(解析版)_第2頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試卷(解析版)_第3頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試卷(解析版)_第4頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.2、如圖,在中,,AB=AC=5,點(diǎn)在上,且,點(diǎn)E是AB上的動(dòng)點(diǎn),連結(jié),點(diǎn),G分別是BC,DE的中點(diǎn),連接,,當(dāng)AG=FG時(shí),線段長(zhǎng)為(

)A. B. C. D.43、已知扇形的半徑為6,圓心角為.則它的面積是(

)A. B. C. D.4、如圖,在等腰Rt△ABC中,AC=BC=,點(diǎn)P在以斜邊AB為直徑的半圓上,M為PC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是(

)A.π B.π C.π D.25、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長(zhǎng),交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°6、如圖,AB是半圓的直徑,點(diǎn)D是弧AC的中點(diǎn),∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°7、如圖,圓內(nèi)接正六邊形的邊長(zhǎng)為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(

)A. B. C. D.8、一個(gè)商標(biāo)圖案如圖中陰影部分,在長(zhǎng)方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長(zhǎng)線相交于點(diǎn),則商標(biāo)圖案的面積是(

)A. B.C. D.9、如圖,AB是⊙O的直徑,點(diǎn)E是AB上一點(diǎn),過(guò)點(diǎn)E作CD⊥AB,交⊙O于點(diǎn)C,D,以下結(jié)論正確的是()A.若⊙O的半徑是2,點(diǎn)E是OB的中點(diǎn),則CD=B.若CD=,則⊙O的半徑是1C.若∠CAB=30°,則四邊形OCBD是菱形D.若四邊形OCBD是平行四邊形,則∠CAB=60°10、如圖,已知是的兩條切線,A,B為切點(diǎn),線段交于點(diǎn)M.給出下列四種說(shuō)法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說(shuō)法的個(gè)數(shù)是(

)A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、已知圓錐的底面半徑為,側(cè)面展開(kāi)圖的圓心角是180°,則圓錐的高是______.2、某圓的周長(zhǎng)是12.56米,那么它的半徑是______________,面積是__________.3、已知:如圖,半圓O的直徑AB=12cm,點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn),則弦AC,AD和CD圍成的圖形(圖中陰影部分)的面積S是___.4、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點(diǎn)D為邊AC的中點(diǎn).以點(diǎn)B為圓心,BD為半徑畫(huà)圓弧,交邊BC于點(diǎn)E,則圖中陰影部分圖形的面積為_(kāi)_____.a(chǎn)5、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.6、如圖,是的直徑,弦于點(diǎn),且,則的半徑為_(kāi)_________.7、如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過(guò)點(diǎn)作的平行線交兩弧于點(diǎn)、,則陰影部分的面積是________.8、如圖,AB是⊙O的直徑,點(diǎn)C,D,E都在⊙O上,∠1=55°,則∠2=_____°.9、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)10、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.2、用反證法證明:一條線段只有一個(gè)中點(diǎn).3、如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個(gè)頂點(diǎn)分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長(zhǎng).4、如圖,四邊形OABC中,.OA=OC,BA=BC.以O(shè)為圓心,以O(shè)A為半徑作☉O(1)求證:BC是☉O的切線:(2)連接BO并延長(zhǎng)交⊙O于點(diǎn)D,延長(zhǎng)AO交⊙O于點(diǎn)E,與此的延長(zhǎng)線交于點(diǎn)F若.①補(bǔ)全圖形;②求證:OF=OB.5、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點(diǎn).(1)判斷直線與⊙的位置關(guān)系,并說(shuō)明理由;(2)若,求圖中陰影部分的面積.-參考答案-一、單選題1、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.2、A【解析】【分析】連接DF,EF,過(guò)點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長(zhǎng)度,從而求解.【詳解】解:連接DF,EF,過(guò)點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點(diǎn)G是DE的中點(diǎn),∴AG=DG=EG又∵AG=FG∴點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點(diǎn)是BC的中點(diǎn),∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點(diǎn)】本題考查直徑所對(duì)的圓周角是90°,四點(diǎn)共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計(jì)算是解題關(guān)鍵.3、D【解析】【分析】已知扇形的半徑和圓心角度數(shù)求扇形的面積,選擇公式直接計(jì)算即可.【詳解】解:.故選:D【考點(diǎn)】本題考查扇形面積公式的知識(shí)點(diǎn),熟知扇形面積公式及適用條件是解題的關(guān)鍵.4、B【解析】【分析】取AB的中點(diǎn)O、AC的中點(diǎn)E、BC的中點(diǎn)F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長(zhǎng),進(jìn)而可求出OC,OP的長(zhǎng),求得∠CMO=90°,于是得到點(diǎn)M在以O(shè)C為直徑的圓上,然后根據(jù)圓的周長(zhǎng)公式計(jì)算點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).【詳解】解:取AB的中點(diǎn)O、AC的中點(diǎn)E、BC的中點(diǎn)F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M(jìn)為PC的中點(diǎn),∴OM⊥PC,∴∠CMO=90°,∴點(diǎn)M在以O(shè)C為直徑的圓上,P點(diǎn)在A點(diǎn)時(shí),M點(diǎn)在E點(diǎn);P點(diǎn)在B點(diǎn)時(shí),M點(diǎn)在F點(diǎn).∵O是AB中點(diǎn),E是AC中點(diǎn),∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點(diǎn)的路徑為以EF為直徑的半圓,∴點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)=×π×2=π.故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動(dòng)點(diǎn)的軌跡:點(diǎn)按一定規(guī)律運(yùn)動(dòng)所形成的圖形為點(diǎn)運(yùn)動(dòng)的軌跡.解決此題的關(guān)鍵是利用圓周角定理確定M點(diǎn)的軌跡為以EF為直徑的半圓.5、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.6、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點(diǎn)D是弧AC的中點(diǎn),可以得到∠DCA的度數(shù),直徑所對(duì)的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點(diǎn)D是弧AC的中點(diǎn),∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點(diǎn)】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.7、A【解析】【分析】正六邊形的面積加上六個(gè)小半圓的面積,再減去中間大圓的面積即可得到結(jié)果.【詳解】解:正六邊形的面積為:,六個(gè)小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點(diǎn)】本題考查了正多邊形與圓,圓的面積的計(jì)算,正六邊形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.9、C【解析】【分析】根據(jù)垂徑定理,解直角三角形知識(shí),一一求解判斷即可.【詳解】解:A、∵OC=OB=2,∵點(diǎn)E是OB的中點(diǎn),∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本選項(xiàng)錯(cuò)誤不符合題意;B、根據(jù),缺少條件,無(wú)法得出半徑是1,本選項(xiàng)錯(cuò)誤,不符合題意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四邊形OCBD是菱形;故本選項(xiàng)正確本選項(xiàng)符合題意.D、∵四邊形OCBD是平行四邊形,OC=OD,所以四邊形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本選項(xiàng)錯(cuò)誤不符合題意..故選:C.【考點(diǎn)】本題考查了圓周角定理,垂徑定理,菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的理解題意是解題的關(guān)鍵.10、C【解析】【分析】由切線長(zhǎng)定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點(diǎn),連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯(cuò)誤,綜上:正確的說(shuō)法是個(gè),故選C.【考點(diǎn)】本題考查的是切線長(zhǎng)定理,三角形的外接圓,四邊形的外接圓,掌握以上知識(shí)是解題的關(guān)鍵.二、填空題1、【解析】【分析】設(shè)圓錐的母線長(zhǎng)為Rcm,根據(jù)圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng)和弧長(zhǎng)公式得到2π?5=,然后解方程即可得母線長(zhǎng),然后利用勾股定理求得圓錐的高即可.【詳解】解:設(shè)圓錐的母線長(zhǎng)為Rcm,根據(jù)題意得2π?5=,解得R=10.即圓錐的母線長(zhǎng)為10cm,∴圓錐的高為:(cm).故答案為:.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).2、

2米

12.56平方米【解析】【分析】根據(jù)周長(zhǎng)公式轉(zhuǎn)化為,將C=12.56代入進(jìn)行計(jì)算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結(jié)果.【詳解】因?yàn)镃=2πr,所以==2,所以r=2(米),因?yàn)镾=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點(diǎn)】考查圓的面積和周長(zhǎng)與半徑之間的關(guān)系,學(xué)生必須熟練掌握?qǐng)A的面積和周長(zhǎng)的求解公式,選擇相應(yīng)的公式進(jìn)行計(jì)算,利用公式是解題的關(guān)鍵.3、【解析】【分析】如圖,連接OC、OD、CD,OC交AD于點(diǎn)E,由點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn)可得,在同圓中,同弧所對(duì)的圓周角是圓心角的一半,即可得出,再根據(jù)得,,都是等邊三角形,所以,,可證,故,由扇形的面積公式計(jì)算即可.【詳解】如圖所示,連接OC、OD、CD,OC交AD于點(diǎn)E,點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn),,,,,都是等邊三角形,,,在與中,,,,.故答案為:.【考點(diǎn)】本題考查了扇形面積公式的應(yīng)用,證明,把求陰影部分面積轉(zhuǎn)化為求扇形面積是解題的關(guān)鍵.4、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計(jì)算.【詳解】解:∵∠ABC=90°,點(diǎn)D為邊AC的中點(diǎn),∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點(diǎn)】本題考查了扇形面積的計(jì)算:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長(zhǎng)).也考查了直角三角形斜邊上的中線性質(zhì).5、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).6、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點(diǎn)】本題考查了垂徑定理、勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.7、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計(jì)算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進(jìn)行計(jì)算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點(diǎn)】本題考查了扇形面積的計(jì)算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.8、35【解析】【分析】如圖(見(jiàn)解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點(diǎn)】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.9、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點(diǎn)】本題主要考查圓周角定理、扇形的面積計(jì)算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.10、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.三、解答題1、(1),M(,);(2),(,);(3)證明見(jiàn)試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最??;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對(duì)稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對(duì)稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問(wèn)題;3.切線的判定;4.壓軸題.2、見(jiàn)解析.【解析】【分析】首先假設(shè)結(jié)論的反面:一條線段可以有多個(gè)中點(diǎn),不妨設(shè)有兩個(gè),根據(jù)中點(diǎn)的定義得出矛盾,即可證得.【詳解】解:已知:一條線段,點(diǎn)M為的中點(diǎn).求證:線段只有一個(gè)中點(diǎn)M,證明:假設(shè)線段有兩個(gè)中點(diǎn),分別為點(diǎn)M、N,不妨設(shè)點(diǎn)M在點(diǎn)N的左邊,則,又∵,這與矛盾,∴假設(shè)不成立,線段只有一個(gè)中點(diǎn)M.∴一條線段只有一個(gè)中點(diǎn).【考點(diǎn)】本題主要考查了反證法,正確理解反證法的基本思想是解題的關(guān)鍵.3、【解析】【分析】證出△DCO是等腰直角三角形,得出DC=CO,求出BO=2AB,連接AO,半徑AO=5,再根據(jù)勾股定理列方程,即可求出AB的長(zhǎng).【詳解】解:∵四邊形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∴∠DCO=90°,又∵∠POM=45°,∴∠CDO=45°,∴CD=CO,∴BO=BC+CO=BC+CD,∴BO=2AB,連接AO,如圖:∵M(jìn)N=10,∴AO=5,又∵在Rt△ABO中,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論