版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省蛟河市中考數(shù)學(xué)強(qiáng)化訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.2、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.3、關(guān)于的方程有兩個不相等的實根、,若,則的最大值是(
)A.1 B. C. D.24、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°5、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或16二、多選題(5小題,每小題3分,共計15分)1、下列方程中,是一元二次方程的是(
)A. B. C. D.2、運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m3、如圖,的內(nèi)切圓(圓心為點O)與各邊分別相切于點D,E,F(xiàn),連接.以點B為圓心,以適當(dāng)長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(
)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點4、下列命題不正確的是(
)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形5、下列關(guān)于圓的敘述正確的有()A.對角互補(bǔ)的四邊形是圓內(nèi)接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù)D.過圓外一點所畫的圓的兩條切線長相等第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,、分別與相切于A、B兩點,若,則的度數(shù)為________.2、如果關(guān)于的一元二次方程的一個解是,那么代數(shù)式的值是___________.3、如圖,拋物線的圖象與坐標(biāo)軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當(dāng)沿半圓從點運(yùn)動至點時,點運(yùn)動的路徑長是__________.4、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.5、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進(jìn)行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)四、簡答題(2小題,每小題10分,共計20分)1、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設(shè)OD=x.(1)如圖1,當(dāng)點O為AC邊的中點時,求x的值;(2)如圖2,當(dāng)點O與點C重合時,連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點時,直接寫出x的取值范圍.2、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標(biāo)為,頂點的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當(dāng)點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標(biāo);若不存在請說明理由.五、解答題(4小題,每小題10分,共計40分)1、已知關(guān)于x的一元二次方程有兩個實數(shù)根.(1)求k的取值范圍;(2)若,求k的值.2、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.3、根據(jù)要求回答以下視圖問題:(1)如圖①,它是由5個小正方體擺成的一個幾何體,將正方體①移走后,新幾何體與原幾何體相比,視圖沒有發(fā)生變化;(2)如圖②,請你在網(wǎng)格紙中畫出該幾何體的主視圖(請用斜線陰影表示);(3)如圖③,它是由幾個小正方體組成的幾何體的俯視圖,小正方形上的數(shù)字表示該位置上的正方體的個數(shù),請在網(wǎng)格紙中畫出該幾何體的左視圖(請用斜線陰影表示).4、某公司電商平臺,在2021年五一長假期間,舉行了商品打折促銷活動,經(jīng)市場調(diào)查發(fā)現(xiàn),某種商品的周銷售量y(件)是關(guān)于售價x(元/件)的一次函數(shù),下表僅列出了該商品的售價x,周銷售量y,周銷售利潤W(元)的三組對應(yīng)值數(shù)據(jù).x407090y1809030W360045002100(1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進(jìn)價a(元/件),售價x為多少時,周銷售利潤W最大?并求出此時的最大利潤;(3)因疫情期間,該商品進(jìn)價提高了m(元/件)(),公司為回饋消費(fèi)者,規(guī)定該商品售價x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價仍滿足(1)中的函數(shù)關(guān)系,若周銷售最大利潤是4050元,求m的值.-參考答案-一、單選題1、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.2、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.4、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.5、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質(zhì),熟練掌握知識點是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內(nèi)容是解此題的關(guān)鍵,注意:只含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)最高是2的整式.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.3、AC【解析】【分析】根據(jù)三角形內(nèi)切圓的性質(zhì)逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當(dāng)長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當(dāng)是等邊三角形時,可以證得D、F、E分別是邊的中點,根據(jù)中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內(nèi)切圓的特點和性質(zhì),解題的關(guān)鍵是能與其它知識聯(lián)系起來,加以證明選項的正確.4、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.5、ACD【解析】【分析】根據(jù)圓內(nèi)接四邊形性質(zhì)直接可判斷A選項正確;利用切線的性質(zhì)可判斷B選項錯誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對判斷C選項正確;根據(jù)切線長定理可判斷D選項正確.【詳解】A.由圓內(nèi)接四邊形定義得:對角互補(bǔ)的四邊形是圓內(nèi)接四邊形,A選項正確;B.圓的切線垂直于過切點的半徑,B選項錯誤;C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù),都等于,C選項正確;D.過圓外一點引的圓的兩條切線,則切線長相等,D選項正確.故選:ACD.【考點】本題考查了正多邊形與圓、切線的性質(zhì)和確定圓的條件,解題關(guān)鍵是熟練掌握有關(guān)的概念.三、填空題1、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質(zhì)以及圓周角定理,掌握以上知識點是解此題的關(guān)鍵.2、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.3、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運(yùn)動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運(yùn)動路經(jīng)為直徑為2的半圓,如圖,∴點運(yùn)動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運(yùn)動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.4、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進(jìn)行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.5、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.四、簡答題1、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結(jié)論;(2)先利用等面積求出x知,再判斷出,進(jìn)而求出DH,OH,最后用勾股定理求出DF,即可得出結(jié)論;(3)分兩種情況:點O在邊AC上和在AC的延長線上,找出分界點,求出x值,即可得出結(jié)論.【詳解】(1)在Rt△ABC中,AB=10,根據(jù)勾股定理得,,∵點O為AC邊的中點,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點D作DH⊥AC于H,∵點O與點C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據(jù)勾股定理得,∴.(3)如圖,當(dāng)點O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當(dāng)點O在AC的延長線上,且半圓O與AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即滿足條件的x取值范圍為:0<x<3或x>12.【考點】此題是圓的綜合題,主要考查了勾股定理,相似三角形的判定和性質(zhì),用分類討論的思想和方程的思想解決問題是解本題的關(guān)鍵.2、;有最大值;存在滿足條件的點,其坐標(biāo)為或【解析】【分析】可設(shè)拋物線解析式為頂點式,由點坐標(biāo)可求得拋物線的解析式,則可求得點坐標(biāo),利用待定系數(shù)法可求得直線解析式;設(shè)出點坐標(biāo),從而可表示出的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;過作軸,交于點,過和于,可設(shè)出點坐標(biāo),表示出的長度,由條件可證得為等腰直角三角形,則可得到關(guān)于點坐標(biāo)的方程,可求得點坐標(biāo).【詳解】解:拋物線的頂點的坐標(biāo)為,可設(shè)拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標(biāo)為,可設(shè)直線解析式為,把點坐標(biāo)代入可得,解得,直線解析式為;設(shè)點橫坐標(biāo)為,則,,,當(dāng)時,有最大值;如圖,過作軸交于點,交軸于點,作于,設(shè),則,,是等腰直角三角形,,,當(dāng)中邊上的高為時,即,,,當(dāng)時,,方程無實數(shù)根,當(dāng)時,解得或,或,綜上可知存在滿足條件的點,其坐標(biāo)為或.【考點】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、二次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)及方程思想等知識.在中主要是待定系數(shù)法的考查,注意拋物線頂點式的應(yīng)用,在中用點坐標(biāo)表示出的長是解題的關(guān)鍵,在中構(gòu)造等腰直角三角形求得的長是解題的關(guān)鍵.本題考查知識點較多,綜合性較強(qiáng),難度適中.五、解答題1、(1);(2)【解析】【分析】(1)根據(jù)建立不等式即可求解;(2)先提取公因式對等式變形為,再結(jié)合韋達(dá)定理求解即可.【詳解】解:(1)由題意可知,,整理得:,解得:,∴的取值范圍是:.故答案為:.(2)由題意得:,由韋達(dá)定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值為.故答案為:.【考點】本題考查了一元二次方程判別式、根與系數(shù)的關(guān)系、韋達(dá)定理、一元二次方程的解法等知識點,當(dāng)>0時,方程有兩個不相等的實數(shù)根;當(dāng)=0時,方程有兩個相等的實數(shù)根;當(dāng)<0時,方程沒有實數(shù)根.2、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進(jìn)而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進(jìn)而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年南昌健康職業(yè)技術(shù)學(xué)院校外兼職教師招聘備考題庫及答案詳解1套
- 2025年度哈爾濱“丁香人才周”(秋季)香坊區(qū)事業(yè)單位引才招聘報名工作備考題庫及答案詳解1套
- 兒童口腔科護(hù)理
- 老年臥床病人居家護(hù)理
- 小品母羊的產(chǎn)后護(hù)理
- 企業(yè)團(tuán)隊協(xié)作提升方案設(shè)計
- 小學(xué)語文詞語寫作練習(xí)題匯編
- 干旱區(qū)滴灌農(nóng)田內(nèi)排鹽過程模擬系統(tǒng)的構(gòu)建與參數(shù)優(yōu)化研究
- 干式移相整流變壓器阻抗設(shè)計的理論與實踐探究
- 常用消毒劑對臨床多重耐藥菌株消毒效果的比較與分析
- DB32∕T 5167-2025 超低能耗建筑技術(shù)規(guī)程
- 2025-2026學(xué)年北師大版六年級數(shù)學(xué)上冊期末測試卷及答案
- 地球小博士知識競賽練習(xí)試題及答案
- 殯儀館鮮花采購?fù)稑?biāo)方案
- 中小學(xué)生意外傷害防范
- 動靜脈瘺課件
- 企業(yè)ESG審計體系構(gòu)建-洞察及研究
- 2025年信用報告征信報告詳版?zhèn)€人版模板樣板(可編輯)
- 急診科心肌梗死搶救流程
- 藥品生產(chǎn)培訓(xùn)課件
- 《先張法預(yù)應(yīng)力混凝土實心方樁技術(shù)規(guī)程》
評論
0/150
提交評論