考點解析人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)試卷(詳解版)_第1頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)試卷(詳解版)_第2頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)試卷(詳解版)_第3頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)試卷(詳解版)_第4頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)試卷(詳解版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、已知⊙O的半徑等于3,圓心O到點P的距離為5,那么點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法確定2、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°3、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.214、如圖,螺母的外圍可以看作是正六邊形ABCDEF,已知這個正六邊形的半徑是2,則它的周長是()A.6 B.12 C.12 D.245、如圖,圓內(nèi)接正六邊形的邊長為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(

)A. B. C. D.6、“圓材埋壁”是我國古代著名數(shù)學(xué)著作《九章算術(shù)》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學(xué)語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(

)A.寸 B.13寸 C.25寸 D.26寸7、一個點到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(

)A.16cm或6cm B.3cm或8cm C.3cm D.8cm8、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm9、如圖,⊙O中,弦AB⊥CD,垂足為E,F(xiàn)為的中點,連接AF、BF、AC,AF交CD于M,過F作FH⊥AC,垂足為G,以下結(jié)論:①;②HC=BF:③MF=FC:④,其中成立的個數(shù)是()A.1個 B.2個 C.3個 D.4個10、如圖,點A,B,C,D,E是⊙O上5個點,若AB=AO=2,將弧CD沿弦CD翻折,使其恰好經(jīng)過點O,此時,圖中陰影部分恰好形成一個“鉆戒型”的軸對稱圖形,則“鉆戒型”(陰影部分)的面積為()A. B.4π﹣3 C.4π﹣4 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為______.2、如圖,,在射線AC上順次截取,,以為直徑作交射線于、兩點,則線段的長是__________cm.3、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側(cè)面一周又回到點A處,則小蟲所走的最短路程為___________(結(jié)果保留根號)4、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.5、如圖,已知正六邊形ABCDEF的邊長為2,對角線CF和BE相交于點N,對角線DF與BE相交于點M,則MN=_____.6、如圖,在平面直角坐標(biāo)系xOy中,點A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點M的坐標(biāo)為___________.7、如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.8、如圖,中,長為,,將繞點A逆時針旋轉(zhuǎn)至,則邊掃過區(qū)域(圖中陰影部分)的面積為________.9、如圖,在中,,,以點為圓心、為半徑的圓交于點,則弧AD的度數(shù)為________度.10、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.三、解答題(5小題,每小題6分,共計30分)1、在中,,,,已知⊙O經(jīng)過點C,且與相切于點D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)若點D是邊上的動點,設(shè)⊙O與邊、分別相交于點E、F,求的最小值.2、如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑,扇形的圓心角,求該圓錐的母線長.3、如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,求線段AE的長.4、如圖,已知四邊形ABCD內(nèi)接于⊙O,且已知∠ADC=120°;請僅用無刻度直尺作出一個30°的圓周角.要求:(1)保留作圖痕跡,寫出作法,寫明答案;(2)證明你的作法的正確性.5、如圖,為的直徑,射線交于點F,點C為劣弧的中點,過點C作,垂足為E,連接.(1)求證:是的切線;(2)若,求陰影部分的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點P在⊙O外.故選:B.【考點】本題考查了點與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.3、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.4、C【解析】【分析】如圖,先求解正六邊形的中心角,再證明是等邊三角形,從而可得答案.【詳解】解:如圖,為正六邊形的中心,為正六邊形的半徑,為等邊三角形,正六邊形ABCDEF的周長為故選:【考點】本題考查的是正多邊形與圓,正多邊形的半徑,中心角,周長,掌握以上知識是解題的關(guān)鍵.5、A【解析】【分析】正六邊形的面積加上六個小半圓的面積,再減去中間大圓的面積即可得到結(jié)果.【詳解】解:正六邊形的面積為:,六個小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點】本題考查了正多邊形與圓,圓的面積的計算,正六邊形的面積的計算,正確的識別圖形是解題的關(guān)鍵.6、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴

R=13,∴

CD=2R=26(寸).故選:D【考點】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.7、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點P在圓外時,點到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點P在圓內(nèi)時,最近點的距離為5cm,最遠(yuǎn)點的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點P在圓外時,最近點的距離為5cm,最遠(yuǎn)點的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點】本題考查了點與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.8、A【解析】【分析】設(shè)扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設(shè)扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點】本題主要考查扇形弧長公式.9、C【解析】【分析】根據(jù)弧,弦,圓心角之間的關(guān)系,圓周角定理以及三角形內(nèi)角和定理一一判斷即可.【詳解】解:∵F為的中點,∴,故①正確,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③錯誤,∵AB⊥CD,F(xiàn)H⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正確,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正確,故選:C.【點評】本題考查圓心角,弧,弦之間的關(guān)系,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考選擇題中的壓軸題.10、A【解析】【分析】連接CD、OE,根據(jù)題意證明四邊形OCED是菱形,然后分別求出扇形OCD和菱形OCED以及△AOB的面積,最后利用割補法求解即可.【詳解】解:連接CD、OE,由題意可知OC=OD=CE=ED,?。交?,∴S扇形ECD=S扇形OCD,四邊形OCED是菱形,∴OE垂直平分CD,由圓周角定理可知∠COD=∠CED=120°,∴CD=2×2×=2,∵AB=OA=OB=2,∴△AOB是等邊三角形,∴S△AOB=×2××2=,∴S陰影=2S扇形OCD﹣2S菱形OCED+S△AOB=2(2×2)+=2(π﹣2)+=π﹣3,故選:A.【考點】此題考查了菱形的性質(zhì)和判定,等邊三角形的性質(zhì),圓周角定理,求解圓中陰影面面積等知識,解題的關(guān)鍵是根據(jù)題意做出輔助線,利用割補法求解.二、填空題1、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標(biāo),證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運用各種知識求解即可.2、6【解析】【分析】過點作于,連,根據(jù)垂徑定理得,在中,,,利用含30度的直角三角形三邊的關(guān)系可得到,再利用勾股定理計算出,由得到答案.【詳解】解:過點作于,連,如圖則,在中,,,則,在中,,,則,則.故答案為6.【考點】本題考查了垂徑定理,含30度的直角三角形三邊的關(guān)系以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.3、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側(cè)面展開圖中兩點間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點.4、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.5、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長為2,且對角線CF和BE相交于點N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對角線DF與BE相交于點M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.6、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點M在AB、BC的垂直平分線上,∴BN=CN,∵點A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點M的坐標(biāo)為(6,6).故答案為(6,6).【考點】本題考查了三角形的外接圓與外心、坐標(biāo)與圖形性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識,其中判定△OMN為等腰直角三角形是解答本題的關(guān)鍵.7、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.8、【解析】根據(jù)已知的條件和旋轉(zhuǎn)的性質(zhì)得出兩個扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉(zhuǎn)120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點】本題考查圓的綜合應(yīng)用,熟練掌握旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)及扇形面積的求法是解題關(guān)鍵.9、【解析】【分析】由三角形內(nèi)角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度數(shù)可求,可解.【詳解】連接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度數(shù)是50度.【考點】本題考查了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握圓周角的性質(zhì).三、解答題1、(1)見詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點O,然后以O(shè)為圓心,為半徑主要作圓即為所作圓.(2)過點C作,根據(jù)點到直線的距離,垂線段最短可知,點CD為圓的直徑時,此時圓的直徑最短,根據(jù)面積法可得出因為EF也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點D,當(dāng)CD為過的圓心點O時,此時圓的直徑最短∴EF為的直徑,∴此時EF的長為故EF的最小值為:【考點】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識點的應(yīng)用,熟練掌握點到直線的距離垂線段最短這性質(zhì)定理是解此題的關(guān)鍵.2、【解析】【分析】根據(jù)側(cè)面展開圖的弧長等于底面周長列方程即可.【詳解】解:圓錐的底面周長,由題意可得,解得,所以該圓錐的母線長為.【考點】本題考查了圓錐的有關(guān)計算,解題關(guān)鍵是熟知圓錐的側(cè)面展開圖的弧長等于圓錐底面周長和圓錐母線等于圓錐側(cè)面展開圖半徑,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論