版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、有一個圓的半徑為5,則該圓的弦長不可能是(
)A.1 B.4 C.10 D.112、已知中,,,,點P為邊AB的中點,以點C為圓心,長度r為半徑畫圓,使得點A,P在⊙C內,點B在⊙C外,則半徑r的取值范圍是(
)A. B. C. D.3、如圖,螺母的外圍可以看作是正六邊形ABCDEF,已知這個正六邊形的半徑是2,則它的周長是()A.6 B.12 C.12 D.244、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內切,則點與圓A的位置關系是(
)A.點C在圓A外,點D在圓A內 B.點C在圓A外,點D在圓A外C.點C在圓A上,點D在圓A內 D.點C在圓A內,點D在圓A外5、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(
)A. B. C. D.6、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°7、已知⊙O的半徑等于3,圓心O到點P的距離為5,那么點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法確定8、若某圓錐的側面展開圖是一個半圓,已知圓錐的底面半徑為r,那么圓錐的高為(
)A. B. C. D.9、如圖,已知⊙O的半徑為4,M是⊙O內一點,且OM=2,則過點M的所有弦中,弦長是整數(shù)的共有()A.1條 B.2條 C.3條 D.4條10、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結果保留)2、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.3、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.4、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.5、如圖,在⊙O中,CD是直徑,弦ABCD,垂足為E,連接BC,若AB=cm,,則圓O的半徑為_______cm.6、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.7、如圖,AB是⊙O的直徑,弦CD⊥AB于點E.若AB=10,AE=1,則弦CD的長是_____.8、如圖:四邊形ABCD內接于⊙O,E為BC延長線上一點,若∠A=n°,則∠DCE=_____°.9、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.10、如圖,四邊形ABCD為⊙O的內接正四邊形,△AEF為⊙O的內接正三角形,連接DF.若DF恰好是同圓的一個內接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.三、解答題(5小題,每小題6分,共計30分)1、已知:A、B、C、D是⊙O上的四個點,且,求證:AC=BD.2、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.3、如圖,已知拋物線的頂點坐標為M,與x軸相交于A,B兩點(點B在點A的右側),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標;(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標;(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側),求證:直線MP是⊙N的切線.4、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.5、如圖,在中,,以為直徑的⊙與交于點,連接.(1)求證:;(2)若⊙與相切,求的度數(shù);(3)用無刻度的直尺和圓規(guī)作出劣弧的中點.(不寫作法,保留作圖痕跡)-參考答案-一、單選題1、D【解析】【分析】根據(jù)圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質,理解圓的直徑是圓的最長的弦是解題的關鍵.2、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點,得CP=,要使點A,P在⊙C內,r>3,r<4,從而確定r的取值范圍.【詳解】∵點A在⊙C內,∴r>3,∵點B在⊙C外,∴r<4,∴,故選:D.【考點】本題考查了點和圓的位置關系,利用數(shù)形結合思想是解題的關鍵.3、C【解析】【分析】如圖,先求解正六邊形的中心角,再證明是等邊三角形,從而可得答案.【詳解】解:如圖,為正六邊形的中心,為正六邊形的半徑,為等邊三角形,正六邊形ABCDEF的周長為故選:【考點】本題考查的是正多邊形與圓,正多邊形的半徑,中心角,周長,掌握以上知識是解題的關鍵.4、C【解析】【分析】根據(jù)內切得出圓A的半徑,再判斷點D、點E到圓心的距離即可【詳解】∵圓A與圓B內切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點D在圓A內在Rt△ABC中,∴點C在圓A上故選:C【考點】本題考查點與圓的位置關系、圓與圓的位置關系、勾股定理,熟練掌握點與圓的位置關系是關鍵5、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.6、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質,掌握圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質.7、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點P在⊙O外.故選:B.【考點】本題考查了點與圓的位置關系,熟練掌握d,r法則是解題的關鍵.8、C【解析】【分析】設圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設圓錐母線長為R,由題意得:∵圓錐的側面展開圖是一個半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點】本題主要考查圓錐側面展開圖及弧長計算公式,熟練掌握圓錐的特征及弧長計算公式是解題的關鍵.9、C【解析】【分析】過點M作AB⊥OM交⊙O于點A、B,根據(jù)勾股定理求出AM,根據(jù)垂徑定理求出AB,進而得到答案.【詳解】解:過點M作AB⊥OM交⊙O于點A、B,連接OA,則AM=BM=AB,在Rt△AOM中,AM===,∴AB=2AM=,則≤過點M的所有弦≤8,則弦長是整數(shù)的共有長度為7的兩條,長度為8的一條,共三條,故選:C.【考點】本題考查了垂徑定理,勾股定理,掌握垂直于選的直徑平分這條弦,并平分弦所對的兩條弧是解題關鍵.10、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.二、填空題1、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關鍵.2、5【解析】【詳解】如圖,設DC與⊙O的切點為E,∵PA、PB分別是⊙O的切線,且切點為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.3、8.【解析】【分析】連結OA,OB,點是的中點,半徑交弦于點,根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關鍵.4、2π【解析】【詳解】分析:根據(jù)弧長公式可得結論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關鍵.5、2【解析】【詳解】解:如圖,連接OB∵∴∵在⊙O中,CD是直徑,弦ABCD∴AE=BE,且△OBE是等腰直角三角形∵AB=cm∴BE=cm∴OB=2cm故答案為:2.【考點】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了圓周角定理和等腰直角三角形的性質.6、40【解析】【分析】若要利用∠BAD的度數(shù),需構建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點】本題考查了圓周角定理及其推論:同弧所對的圓周角相等;半圓(弧)和直徑所對的圓周角是直角,正確添加輔助線是解題的關鍵.7、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關鍵.8、n【解析】【分析】利用圓內接四邊形的對角互補和鄰補角的性質求解.【詳解】∵四邊形ABCD是⊙O的內接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點】本題考查了圓內接四邊形的性質.解決本題的關鍵是掌握:圓內接四邊形的對角互補.9、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.10、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內接正四邊形與內接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設這個正多邊形為n邊形,∵AD,AF分別為⊙O的內接正四邊形與內接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關概念.三、解答題1、詳見解析【解析】【分析】先根據(jù)可得,再根據(jù)同圓中等弧所對的弦相等即得.【詳解】證明:∵∴∴【考點】本題考查圓心角定理推論,解題關鍵是熟知同圓或等圓中,等弧所對的弦相等.2、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關鍵.3、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉化為頂點式,然后根據(jù)二次函數(shù)的性質求出拋物線的頂點坐標;(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最??;先求出點A、B、C的坐標,再利用待定系數(shù)法求出直線BC的解析式,進而求出其最小值和點R的坐標;(3)設點P坐標為(x,).根據(jù)NPAB=,列出方程,解方程得到點P坐標,再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標是(,);(2)∵,∴當y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年黃岡中學(含黃岡中學實驗學校)專項公開招聘教師16人備考題庫有答案詳解
- 小學教師數(shù)字教學能力評價與智能評價系統(tǒng)在生物教育中的應用研究教學研究課題報告
- 合肥市醫(yī)療器械檢驗檢測中心有限公司2025年下半年第二批社會招聘備考題庫及參考答案詳解1套
- 3D可視化技術對神經(jīng)外科術后并發(fā)癥的預防作用
- 四川托普信息技術職業(yè)學院2025-2026學年第二學期師資招聘備考題庫含答案詳解
- 2025年保山市隆陽區(qū)瓦房彝族苗族鄉(xiāng)中心衛(wèi)生院鄉(xiāng)村醫(yī)生招聘備考題庫及一套完整答案詳解
- 2025年杭州之江灣股權投資基金管理有限公司招聘備考題庫及1套參考答案詳解
- 2025年四川省教育融媒體中心(四川教育電視臺)公開招聘編外工作人員備考題庫及參考答案詳解
- 統(tǒng)編七年級上第3課 遠古的傳說 課件
- 2025年凱欣糧油有限公司招聘備考題庫完整答案詳解
- 雙杠2課件教學課件
- 公園游船安全知識培訓課件
- 保安崗位安全意識培訓課件
- 智能家居行業(yè)人才競爭分析2025年可行性研究報告
- 醫(yī)院四級電子病歷評審匯報
- 工會財務知識課件
- 國學館展廳設計
- 三維傷口掃描系統(tǒng):革新傷口評估模式的關鍵力量
- AI在體育領域的數(shù)據(jù)分析與預測
- 國開機考答案 管理學基礎2025-06-21
- 2025年春國開(新疆)《國家安全教育》平時作業(yè)1-4題庫
評論
0/150
提交評論