版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學易錯易錯壓軸選擇題精選:勾股定理選擇題50(4)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.下列四組數(shù)據(jù)不能作為直角三角形的三邊長的是()A.6,8,10 B.5,12,13 C.3,5,6 D.,,2.如圖,A、B兩點在直線l的兩側(cè),點A到直線l的距離AC=4,點B到直線l的距離BD=2,且CD=6,P為直線CD上的動點,則的最大值是()A. B. C. D.63.在平面直角坐標系內(nèi)的機器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行動結(jié)果為:在原地順時針旋轉(zhuǎn)A后,再向正前方沿直線行走α.若機器人的位置在原點,正前方為y軸的負半軸,則它完成一次指令[4,30°]后位置的坐標為()A.(-2,2) B.(-2,-2) C.(-2,-2) D.(-2,2)4.如圖,P為等邊三角形ABC內(nèi)的一點,且P到三個頂點A,B,C的距離分別為3,4,5,則△ABC的面積為()A. B. C. D.5.一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為()A.小時 B.小時 C.小時 D.小時6.如圖是一塊長、寬、高分別為6cm、4cm、3cm的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體的表面到長方體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是()A.cm B.cm C.cm D.9cm7.已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE,以下四個結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中結(jié)論正確的個數(shù)是()A.1 B.2 C.3 D.48.如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,則DN+MN的最小值是()A.8 B.9 C.10 D.129.如圖,在四邊形ABCD中,∠DAB=30°,點E為AB的中點,DE⊥AB,交AB于點E,DE=,BC=1,CD=,則CE的長是()A. B. C. D.10.直角三角形的面積為,斜邊上的中線為,則這個三角形周長為()A. B.C. D.11.如圖所示,用四個全等的直角三角形和一個小正方形拼成一個大正方形已知大正方形的面積為49,小正方形的面積為4.用,表示直角三角形的兩直角邊(),請仔細觀察圖案.下列關(guān)系式中不正確的是()A. B.C. D.12.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延長線上有一動點D,以AD為邊在右側(cè)作等邊三角形,連CE,CE最短長為()A. B. C. D.13.我國古代數(shù)學家趙爽的“勾股方圓圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么ab的值為()A.49 B.25 C.12 D.1014.如圖,點的坐標是,若點在軸上,且是等腰三角形,則點的坐標不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)15.在下列以線段a、b、c的長為邊,能構(gòu)成直角三角形的是()A.a(chǎn)=3,b=4,c=6 B.a(chǎn)=5,b=6,c=7 C.a(chǎn)=6,b=8,c=9 D.a(chǎn)=7,b=24,c=2516.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,若CE=1,AB=4,則下列結(jié)論一定正確的個數(shù)是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE與△BDF的周長相等;A.1個 B.2個 C.3個 D.4個17.如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,D為BC邊上的一點,現(xiàn)將直角邊AC沿直線AD折疊,使AC落在斜邊AB上,且與AE重合,則CD的長為()A.2cm B.2.5cm C.3cm D.4cm18.在中,,,,則()A. B. C. D.19.如圖,在數(shù)軸上點所表示的數(shù)為,則的值為()A. B. C. D.20.甲、乙兩艘輪船同時從港口出發(fā),甲以16海里/時的速度向北偏東的方向航行,它們出發(fā)1.5小時后,兩船相距30海里,若乙以12海里/時的速度航行,則它的航行方向為()A.北偏西 B.南偏西75°C.南偏東或北偏西 D.南偏西或北偏東21.如圖,在四邊形ABCD中,,,,,分別以點A,C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.6 C. D.822.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計)的高為,在容器內(nèi)壁離容器底部的點處有一滴蜂蜜,此時一只螞蟻正好在容器外壁,位于離容器上沿的點處,若螞蟻吃到蜂蜜需爬行的最短路徑為,則該圓柱底面周長為()A. B. C. D.23.如圖,在中,平分,平分,且交于,若,則的值為A.36 B.9 C.6 D.1824.如圖,在四邊形ABCD中,,,,.分別以點A,C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.4 C.3 D.25.長度分別為9cm、12cm、15cm、36cm、39cm五根木棍首尾連接,最多可搭成直角三角形的個數(shù)為A.1個 B.2個 C.3個 D.4個26.如圖,“趙爽弦圖”是由四個全等的直角三角形和一個小正方形構(gòu)成的大正方形,若直角三角形的兩直角邊長分別為和,則小正方形的面積為()A.4 B.3 C.2 D.127.有下列的判斷:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下說法正確的是()A.①② B.②③ C.①③ D.②28.如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點B落在點B′處,則重疊部分△AFC的面積為()A.12 B.10C.8 D.629.已知等邊三角形的邊長為a,則它邊上的高、面積分別是()A. B. C. D.30.下列說法不能得到直角三角形的()A.三個角度之比為1:2:3的三角形 B.三個邊長之比為3:4:5的三角形C.三個邊長之比為8:16:17的三角形 D.三個角度之比為1:1:2的三角形【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.C解析:C【分析】求出兩小邊的平方和長邊的平方,再看看是否相等即可.【詳解】A、62+82=102,此時三角形是直角三角形,故本選項不符合題意;B、52+122=132,此時三角形是直角三角形,故本選項不符合題意;C、32+5262,此時三角形不是直角三角形,故本選項符合題意;D、,此時三角形是直角三角形,故本選項不符合題意;故選:C.【點睛】本題主要考查了勾股定理逆定理,關(guān)鍵是掌握判斷一個三角形是不是直角三角形,必須滿足較小兩邊平方的和等于最大邊的平方才能做出判斷.2.C解析:C【解析】試題解析:作點關(guān)于直線的對稱點,連接并延長,與直線的交點即為使得取最大值時對應(yīng)的點此時過點作于點如圖,四邊形為矩形,的最大值為:故答案為:3.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30°,OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.4.A解析:A【解析】分析:將△BPC繞點B逆時針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點F.AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長,則在直角△ABF中利用勾股定理求得AB的長,進而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點B逆時針旋轉(zhuǎn)60°得△BEA,連EP,且延長BP,作AF⊥BP于點F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.5.C解析:C【解析】【分析】過點C作CD垂直AB延長線于D,根據(jù)題意得∠CDB=45°,∠CAD=30°,設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的長,從而可知BC的長,進而求出救援艇到達C處所用的時間即可.【詳解】如圖:過點C作CD垂直AB延長線于D,則∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達C處所用的時間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小時),故選C.【點睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.6.C解析:C【解析】【分析】本題中螞蟻要跑的路徑有三種情況,知道當螞蟻爬的是一條直線時,路徑才會最短.螞蟻爬的是一個長方形的對角線.展開成平面圖形,根據(jù)兩點之間線段最短,可求出解.【詳解】解:如圖1,當爬的長方形的長是(4+6)=10,寬是3時,需要爬行的路徑的長==cm;如圖2,當爬的長方形的長是(3+6)=9,寬是4時,需要爬行的路徑的長==cm;如圖3,爬的長方形的長是(3+4)=7時,寬是6時,需要爬行的路徑的長==cm.所以要爬行的最短路徑的長cm.故選C.【點睛】本題考查平面展開路徑問題,本題關(guān)鍵知道螞蟻爬行的路線不同,求出的值就不同,有三種情況,可求出值找到最短路線.7.C解析:C【解析】試題分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本結(jié)論正確.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.∴BD⊥CE.本結(jié)論正確.③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°.本結(jié)論正確.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE為等腰直角三角形,∴DE=AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本結(jié)論錯誤.綜上所述,正確的個數(shù)為3個.故選C.8.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關(guān)于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點N為AC上的動點,由三角形兩邊和大于第三邊,知當點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點睛】此題考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用,解題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.9.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90°,∵點E為AB的中點,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE=;故選D.【點睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.10.D解析:D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可?!驹斀狻拷猓涸O(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選:D.【點睛】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.11.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進行合適的變形即可判斷各個選項是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯誤.故選D.【點睛】本題考查勾股定理.在A、B、C選項的等式中需理解等式的各個部分表示的幾何意義,對于D選項是由A、C選項聯(lián)立得出的.12.C解析:C【分析】在CB的反向延長線上取一點B’,使得BC=B’C,連接AB’,易證△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此點E的軌跡是一條直線,過點C作CH⊥BE,則點H即為使得BE最小時的E點的位置,然后根據(jù)直角三角形的性質(zhì)和勾股定理即可得出答案.【詳解】解:在CB的反向延長線上取一點B’,使得BC=B’C,連接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等邊三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴點E在直線BE上運動,過點C作CH⊥BE于點H,則點H即為使得BE最小時的E點的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=BC=,∴CH==.即BE的最小值是.故選C.【點睛】本題是一道動點問題,綜合考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)和勾股定理等知識,將△ACB構(gòu)造成等邊三角形,通過全等證出∠ABC是定值,即點E的運動軌跡是直線是解決此題的關(guān)鍵.13.C解析:C【解析】試題解析:如圖,∵大正方形的面積是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面積是(25-1)÷4=6,又∵直角三角形的面積是ab=6,∴ab=12.故選C.14.D解析:D【詳解】解:(1)當點P在x軸正半軸上,①以O(shè)A為腰時,∵A的坐標是(2,2),∴∠AOP=45°,OA=,∴P的坐標是(4,0)或(,0);②以O(shè)A為底邊時,∵點A的坐標是(2,2),∴當點P的坐標為:(2,0)時,OP=AP;(2)當點P在x軸負半軸上,③以O(shè)A為腰時,∵A的坐標是(2,2),∴OA=,∴OA=AP=∴P的坐標是(-,0).故選D.15.D解析:D【解析】A選項:32+42≠62,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;B選項:52+62≠72,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;C選項:62+82≠92,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;D選項:72+242=252,故符合勾股定理的逆定理,能組成直角三角形,故正確.故選D.16.D解析:D【分析】利用等腰直角三角形的相關(guān)性質(zhì)運用勾股定理以及對應(yīng)角度的關(guān)系來推導對應(yīng)選項的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2,①正確;BD=4-2,②正確;由∠A=∠EDF=45°,則2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正確;△DCE的周長=CD+CE+DE=2+4,△BDF的周長=BD+BF+DF=BD+AB=4+4-2=4+2,④正確;故正確的選項有4個,故選:D.【點睛】本題主要考查等腰直角三角形的相關(guān)性質(zhì)以及勾股定理的運用,本題涉及的等腰直角三角形、翻折、勾股定理以及邊角關(guān)系,需要熟練地掌握對應(yīng)性質(zhì)以及靈活的運用.17.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,設(shè)DC=x,則BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故選:C.【點睛】本題主要考查了勾股定理與折疊問題,熟練掌握翻折的性質(zhì)和勾股定理是解決問題的關(guān)鍵.18.D解析:D【分析】根據(jù)直角三角形的性質(zhì)求出BC,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∠A=30°,∴BC=AB=6,由勾股定理得,AC=,故選:D.【點睛】本題考查的是直角三角形的性質(zhì)、勾股定理,掌握在直角三角形中,30°角所對的直角邊等于斜邊的一半是解題的關(guān)鍵.19.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點A的坐標.【詳解】解:∴由圖可知:點A所表示的數(shù)為:故選:A【點睛】本題主要考查的就是數(shù)軸上點所表示的數(shù),屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是求出斜邊的長度.在數(shù)軸上兩點之間的距離是指兩點所表示的數(shù)的差的絕對值.20.C解析:C【分析】先求出出發(fā)1.5小時后,甲乙兩船航行的路程,進而可根據(jù)勾股定理的逆定理得出乙船的航行方向與甲船的航行方向垂直,進一步即可得出答案.【詳解】解:出發(fā)1.5小時后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向與甲船的航行方向垂直,∵甲船的航行方向是北偏東75°,∴乙船的航行方向是南偏東15°或北偏西15°.故選:C.【點睛】本題考查了勾股定理的逆定理和方位角,屬于??碱}型,正確理解題意、熟練掌握勾股定理的逆定理是解題的關(guān)鍵.21.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點O是AC的中點,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖-基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.22.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如圖:將圓柱展開,EG為上底面圓周長的一半,作A關(guān)于E的對稱點A',連接A'B交EG于F,則螞蟻吃到蜂蜜需爬行的最短路徑為AF+BF的長,即AF+BF=A'B=20cm,延長BG,過A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=∴則該圓柱底面周長為24cm.故選:D.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.同時也考查了同學們的創(chuàng)造性思維能力.23.A解析:A【分析】先根據(jù)角平分線的定義、角的和差可得,再根據(jù)平行線的性質(zhì)、等量代換可得,然后根據(jù)等腰三角形的定義可得,從而可得,最后在中,利用勾股定理即可得.【詳解】平分,平分,,,,,,,,在中,由勾股定理得:,故選:A.【點睛】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的定義、勾股定理等知識點,熟練掌握等腰三角形的定義是解題關(guān)鍵.24.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出.再根據(jù)ASA證明,那么,等量代換得到,利用線段的和差關(guān)系求出.然后在直角中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,則.,.在與中,,,,,.在中,,,,.故選A.【點睛】本題考查了作圖﹣基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.25.B解析:B【解析】試題分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故選B.考點:勾股定理的逆定理點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年太湖創(chuàng)意職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫及參考答案詳解1套
- 2026年吐魯番職業(yè)技術(shù)學院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
- 2026年長沙南方職業(yè)學院單招職業(yè)適應(yīng)性考試題庫及答案詳解一套
- 2026年江蘇省泰州市單招職業(yè)傾向性測試題庫及完整答案詳解1套
- 2026年西安電力機械制造公司機電學院單招職業(yè)傾向性考試題庫及答案詳解一套
- 2026年江西工業(yè)職業(yè)技術(shù)學院單招職業(yè)技能考試題庫及答案詳解一套
- 2026年錦州師范高等專科學校單招職業(yè)技能考試題庫及參考答案詳解1套
- 2026年黑龍江藝術(shù)職業(yè)學院單招職業(yè)傾向性測試題庫及參考答案詳解
- 2026年遼寧建筑職業(yè)學院單招職業(yè)技能測試題庫及答案詳解1套
- 2026年吉林電子信息職業(yè)技術(shù)學院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人筆試備考重點試題及答案解析
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人備考考試試題及答案解析
- 2025年違紀違法典型案例個人學習心得體會
- 2025年度河北省機關(guān)事業(yè)單位技術(shù)工人晉升高級工考試練習題附正確答案
- 交通運輸布局及其對區(qū)域發(fā)展的影響課時教案
- 2025年中醫(yī)院護理核心制度理論知識考核試題及答案
- GB/T 17981-2025空氣調(diào)節(jié)系統(tǒng)經(jīng)濟運行
- 比亞迪儲能項目介紹
- 2025 年高職酒店管理與數(shù)字化運營(智能服務(wù))試題及答案
- 2025年9月廣東深圳市福田區(qū)事業(yè)單位選聘博士11人備考題庫附答案
- 糖尿病足潰瘍VSD治療創(chuàng)面氧自由基清除方案
評論
0/150
提交評論