版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.如圖1,在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標(biāo)為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運動時間為t秒,且t<4.(1)點F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.2.已知,點為平面內(nèi)一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).3.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過P點作PH//EQ交CD于點H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).4.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點,用含有的式子表示的度數(shù).5.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).6.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當(dāng)點B在點A的左側(cè)時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當(dāng)點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)7.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.8.?dāng)?shù)學(xué)中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.9.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:10.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個分子為1的正的真分?jǐn)?shù)之差,即;②把拆成兩個分子為1的正的真分?jǐn)?shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.11.(閱讀材料)數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計算的奧妙.你知道怎樣迅速準(zhǔn)確的計算出結(jié)果嗎?請你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個兩位數(shù).第二步:∵59319的個位數(shù)是9,∴能確定59319的立方根的個位數(shù)是9.第三步:如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.(解答問題)根據(jù)上面材料,解答下面的問題(1)求110592的立方根,寫出步驟.(2)填空:__________.12.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:13.如圖,已知點,點,且,滿足關(guān)系式.(1)求點、的坐標(biāo);(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當(dāng)三角形和三角形的面積相等時,求移動時間和點的坐標(biāo).14.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)15.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.設(shè)點P運動的時間為t秒.(1)請以A點為原點,AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標(biāo)系,并用t表示出點P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點使△APE的面積等于20cm2時,若存在,請求出P點坐標(biāo);若不存在,請說明理由.16.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.17.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時,我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點在軸上,是“等距三角形”,請直接寫出的取值范圍.18.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點p的橫坐標(biāo)C的取值范圍(直接寫出答案即可)19.已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據(jù)以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?(2)請你幫該物流公司設(shè)計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.20.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).21.在平面直角坐標(biāo)系中,點、在坐標(biāo)軸上,其中、滿足.(1)求、兩點的坐標(biāo);(2)將線段平移到,點的對應(yīng)點為,如圖1所示,若三角形的面積為,求點的坐標(biāo);(3)平移線段到,若點、也在坐標(biāo)軸上,如圖2所示.為線段上的一動點(不與、重合),連接、平分,.求證:.22.如圖①,在平面直角坐標(biāo)系中,點A在x軸上,直線OC上所有的點坐標(biāo),都是二元一次方程的解,直線AC上所有的點坐標(biāo),都是二元一次方程的解,過C作x軸的平行線,交y軸與點B.(1)求點A、B、C的坐標(biāo);(2)如圖②,點M、N分別為線段BC,OA上的兩個動點,點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,設(shè)運動時間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大?。?3.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.24.某治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有甲、乙兩種型號的設(shè)備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺甲型設(shè)備比購買一臺乙型設(shè)備多2萬元,購買3臺甲型設(shè)備比購買4臺乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設(shè)計一種最省錢的購買方案.25.如圖,在平面直角坐標(biāo)系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應(yīng),點C與點B對應(yīng),連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標(biāo);(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請給出,滿足的數(shù)量關(guān)系式,并說明理由.26.定義一種新運算“a※b”:當(dāng)a≥b時,a※b=2a+b;當(dāng)a<b時,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),則x的取值范圍為;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范圍;(4)小明在計算(2x2﹣2x+4)※(x2+4x﹣6)時隨意取了一個x的值進行計算,得出結(jié)果是0,小麗判斷小明計算錯了,小麗是如何判斷的?請說明理由.27.在平面直角坐標(biāo)系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標(biāo)為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標(biāo)n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.28.閱讀下列材料:問題:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y(tǒng)+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2請按照上述方法,完成下列問題:(1)已知x﹣y=3,且x>﹣1,y<0,則x的取值范圍是;x+y的取值范圍是;(2)已知x﹣y=a,且x<﹣b,y>2b,根據(jù)上述做法得到-2<3x-y<10,求a、b的值.29.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為(,).(1)則A點的坐標(biāo)為;點C的坐標(biāo)為,D點的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.30.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運柑橘12噸;用3輛A型車和4輛B型車一次可運柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運完全部柑橘,且每輛車均為滿載.①請幫柑橘園設(shè)計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當(dāng)t為或時,S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時,點D與點H重合,所以要分以下兩種情況討論:情況一:當(dāng)時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時,S=S△APE.【點睛】本題考查了平面直角坐標(biāo)系中點的移動,一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.2.(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.3.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識.(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.4.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點睛】本題主要考查平行線的性質(zhì)與判定,靈活運用平行線的性質(zhì)與判定是解題的關(guān)鍵.5.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.6.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當(dāng)點在點的左側(cè)時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖3,過點作,當(dāng)點在點的右側(cè)時,,,根據(jù)平行線的性質(zhì)及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).7.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時,x+y=4+3=7當(dāng)x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.8.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應(yīng)值是錯誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應(yīng)用,新定義運算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運算.9.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運算中的規(guī)律探索,根據(jù)已知運算得出數(shù)字之間的變化規(guī)律是解決問題的關(guān)鍵.10.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分?jǐn)?shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應(yīng)用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點睛】考查了有理數(shù)運算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運算.本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.11.(1)48;(2)28【分析】(1)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.(2)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定110592的立方根的個位數(shù)是8.第三步:如果劃去110592后面的三位592得到數(shù)110,而,則,可得,由此能確定110592的立方根的十位數(shù)是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定21952的立方根的個位數(shù)是8.第三步:如果劃去21952后面的三位952得到數(shù)21,而,則,可得,由此能確定21952的立方根的十位數(shù)是2,因此21952的立方根是28.即,故答案為:28.【點睛】本題主要考查了數(shù)的立方,理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)是解題的關(guān)鍵,有一定難度.12.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運算中的規(guī)律探索,根據(jù)已知運算得出數(shù)字之間的變化規(guī)律是解決問題的關(guān)鍵.13.(1);(2);(3),點C的坐標(biāo)為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負性及等積法是解題的關(guān)鍵.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當(dāng)點在的左側(cè)時,,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點在的左側(cè)時,;當(dāng)點在的右側(cè)時,可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;過點作,,,,,,;(3)①如圖3,若當(dāng)點在的左側(cè)時,,,,分別平分和,,,;如圖4,當(dāng)點在的右側(cè)時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識點,作輔助線后能求出各個角的度數(shù),是解此題的關(guān)鍵.15.(1)建立直角坐標(biāo)系見解析,當(dāng)0<t≤4時,即當(dāng)點P在線段AB上時,其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時,即當(dāng)點P在線段BC上時,其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時,即當(dāng)點P在線段CE上時,其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點P的坐標(biāo)分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點P的運動速度分別求出點P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點P的坐標(biāo)以及,分別列出三個方程并解出此時t的值再進行討論.【詳解】(1)正確畫出直角坐標(biāo)系如下:當(dāng)0<t≤4時,點P在線段AB上,此時P點的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時P點的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時,點P在線段BC上,此時P點的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時,點P在線段CE上,此時P點的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時,點P在線段AB上,,解得:t(s);∴P點的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時,點P在線段BC上,;∴;解得:t=6(s);∴點P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時,點P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點的坐標(biāo)為:P(,0)或P(8,4)時,△APE的面積等于.【點睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據(jù)動點的坐標(biāo)正確地求出三角形的底邊長度和高是解題的關(guān)鍵.16.(1)4,-7;(2);(3);(4)或或或【分析】(1)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(2)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(3)由材料中“,其中”得出,解不等式,再根據(jù)3x+1為整數(shù),即可計算出具體的值;(4)由材料中的條件可得,由,可求得的范圍,根據(jù)為整數(shù),分情況討論即可求得x的值.【詳解】(1),.故答案為:4,-7.(2)如果.那么x的取值范圍是.故答案為:.(3)如果,那么.解得:∵是整數(shù).∴.故答案為:.(4)∵,其中,∴,∵,∴.∵,∴,∴,∴,0,1,2.當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;∴或或或.【點睛】本題考查了新定義下的不等式的應(yīng)用,關(guān)鍵是理解題中的意義,列出不等式求解;最后一問要注意不要漏了情況.17.(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點之間的直角距離的定義,結(jié)合O、P兩點的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點之間的直角距離的定義,用含x、y的代數(shù)式表示出來d(O,Q)=4,結(jié)合點Q(x,y)在第一象限,即可得出結(jié)論;(3)由點N在直線y=x+3上,設(shè)出點N的坐標(biāo)為(m,m+3),通過尋找d(M,N)的最小值,得出點M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點C在x軸上時,點C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時,△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時,m的取值范圍為:m≥4.【點睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對“勾股距”和“等距三角形”新概念的理解,運用“勾股距”和“等距三角形”解題.18.(1)-1,-3.(2)①當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.當(dāng)點P在直線AB的上方時,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.如圖2中,當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.如圖3中,當(dāng)點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點P在直線AB兩側(cè),△PAB的面積分別為3和10時,m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.(3)如圖4中,過點B作BH⊥x軸于H,過點A作AT⊥BH交BH于點T,延長AB交x軸于E.當(dāng)點P在直線AB的下方時,S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時,-m+4=3,解得m=1,當(dāng)△PAB的面積=3時,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對稱性可知,當(dāng)點P在直線AB的右側(cè)時,當(dāng)△PAB的面積=3時,m=7,當(dāng)△PAB的面積=3時,m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用分割法求三角形面積,學(xué)會尋找特殊位置解決問題,屬于中考??碱}型.19.(1)A型車、B型車都裝滿貨物一次可以分別運貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費為2080元.【分析】(1)設(shè)每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,根據(jù)題目中的等量關(guān)系:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數(shù)解,得到三中租車方案;(3)根據(jù)(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費用即可.【詳解】解:(1)設(shè)每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)結(jié)合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數(shù)∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費為2120元.【點睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關(guān)鍵是明確二元一次方程有無數(shù)解,但在解與實際問題有關(guān)的二元一次方程組時,要結(jié)合未知數(shù)的實際意義求解.20.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點睛】本題運用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關(guān)定理是解題的關(guān)鍵.21.(1),兩點的坐標(biāo)分別為,;(2)點的坐標(biāo)是;(3)證明見解析【分析】(1)根據(jù)非負數(shù)的性質(zhì)得出二元一次方程組,求解即可;(2)過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,根據(jù)三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積)列出方程,求解得出點C的坐標(biāo),由平移的規(guī)律可得點D的坐標(biāo);(3)過點作,交軸于點,過點作,交于點,根據(jù)兩直線平行,內(nèi)錯角相等與已知條件得出,同樣可證,由平移的性質(zhì)與平行公理的推論可得,最后根據(jù),通過等量代換進行證明.【詳解】解:(1),又∵,,,,即,解方程組得,,兩點的坐標(biāo)分別為,;(2)如圖,過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,∴三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積),根據(jù)題意得,,化簡,得,解得,,依題意得,,,即點的坐標(biāo)為,依題意可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,從而可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,∴點的坐標(biāo)是;(3)證明:過點作,交軸于點,如圖所示,則,,,過點作,交于點,如圖所示,則,平分,,,由平移得,,,,,,,.【點睛】本題綜合性較強,考查非負數(shù)的性質(zhì),解二元一次方程組,平行線的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),第(3)題巧作輔助線構(gòu)造平行線是解題的關(guān)鍵.22.(1),,;(2)見解析.【分析】(1)令中的,求出相應(yīng)的x的值,即可得到A的坐標(biāo),將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標(biāo),進而可得到B的坐標(biāo);(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點B的縱坐標(biāo)與點C的縱坐標(biāo)相同,;(2),,,.∵點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,,,,.當(dāng)時,即時,;當(dāng)時,即時,;當(dāng)時,即時,.【點睛】本題主要考查二元一次方程及方程組的應(yīng)用,數(shù)形結(jié)合并分情況討論是解題的關(guān)鍵.23.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當(dāng)時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當(dāng)時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.24.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備;(3)最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【分析】(1)由一臺A型設(shè)備的價格是x萬元,一臺乙型設(shè)備的價格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺甲型設(shè)備-購買一臺乙型設(shè)備=2萬元,購買4臺乙型設(shè)備-購買3臺甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設(shè)購買甲型設(shè)備m臺,則購買乙型設(shè)備(10-m)臺,由題意得不等關(guān)系:購買甲型設(shè)備的花費+購買乙型設(shè)備的花費≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設(shè)備處理污水量+乙型設(shè)備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設(shè)該治污公司購進m臺甲型設(shè)備,則購進(10﹣m)臺乙型設(shè)備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當(dāng)m=4時,總費用為10×4+8×6=88(萬元);當(dāng)m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【點睛】此題主要考查了二元一次方程組的應(yīng)用和一元一次不等式的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.25.(1);(2);(3)當(dāng)點C在x軸的正半軸上時,;當(dāng)點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質(zhì)可得AD∥BC.分兩種情況:當(dāng)點C在x軸的正半軸上時;當(dāng)點C在點A和點O之間時.由平行線的性質(zhì)可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當(dāng)點C在x軸的正半軸上時,如圖1,當(dāng)點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質(zhì)等知識,靈活運用這些性質(zhì)進行推理計算是本題的關(guān)鍵,要注意分類討論.26.(1)7;(2)x≥7;(3)或x<3;(4)詳見解析.【分析】(1)先判斷a、b的大小,再根據(jù)相應(yīng)公式計算可得;(2)結(jié)合公式知3x﹣4≥2x+3,解之可得;(3)由題意可得或,分別求解可得;(4)先利用作差法判斷出2x2﹣2x+4>x2+4x﹣6,再根據(jù)公式計算(2x2﹣2x+4)※(x2+4x﹣6)即可.【詳解】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7.故答案為:﹣7;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7.故答案為:x≥7.(3)由題意可知分兩種情況討論:①,解得;②,解得;綜上:x的取值范圍為或x<3;(4)∵2x2﹣2x+4﹣(x2+4x﹣6)=x2﹣6x+10=(x﹣3)2+1>0∴2x2﹣2x+4>x2+4x﹣6,∴原式=2(2x2﹣2x+4)+(x2+4x﹣6)=4x2﹣4x+8+x2+4x﹣6=5x2+4;∴小明計算錯誤.【點睛】本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟和弄清新定義是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.27.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結(jié)合題意,首先求得線段中點C坐標(biāo),再根據(jù)題意分析,即可得到答案;(3)過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,根據(jù)三角形和直角坐標(biāo)系的性質(zhì),得;再根據(jù)直角坐標(biāo)系和等腰直角三角形性質(zhì),得,,從而得到答案;(4)根據(jù)題意,得線段中點坐標(biāo);再結(jié)合題意列不等式并求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山西忻州保德縣社區(qū)工作者招(選)聘36人備考題庫附答案
- 裝訂工崗前競爭分析考核試卷含答案
- 電器附件制造工崗前安全技能測試考核試卷含答案
- 水聲換能器裝配工安全教育模擬考核試卷含答案
- 2024年海南省特崗教師招聘考試真題題庫附答案
- 2024年璧山縣事業(yè)單位聯(lián)考招聘考試歷年真題附答案
- 2024年湖南涉外經(jīng)濟學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2025年企業(yè)企業(yè)內(nèi)部審計制度手冊
- 2024年莎車縣幼兒園教師招教考試備考題庫附答案
- 2024年鄭州信息工程職業(yè)學(xué)院輔導(dǎo)員考試筆試題庫附答案
- 混凝土生產(chǎn)過程監(jiān)控方案
- GB/T 46755-2025智能紡織產(chǎn)品通用技術(shù)要求
- 2026北京市中央廣播電視總臺招聘124人參考題庫附答案
- 十五五規(guī)劃綱要解讀:循環(huán)經(jīng)濟模式推廣
- 2026年山西警官職業(yè)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年農(nóng)夫山泉-AI-面試題目及答案
- 2026凱翼汽車全球校園招聘(公共基礎(chǔ)知識)綜合能力測試題附答案
- 山東省威海市環(huán)翠區(qū)2024-2025學(xué)年一年級上學(xué)期1月期末數(shù)學(xué)試題
- 2025年手術(shù)室護理實踐指南知識考核試題及答案
- 外貿(mào)公司采購專員績效考核表
- 彩禮分期合同范本
評論
0/150
提交評論