2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2026屆江蘇省鹽城市亭湖初級中學九年級數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.二次函數(shù)下列說法正確的是()A.開口向上 B.對稱軸為直線C.頂點坐標為 D.當時,隨的增大而增大2.如圖,中,,于,平分,且于,與相交于點,于,交于,下列結(jié)論:①;②;③;④.其中正確的是()A.①② B.①③ C.①②③ D.①②③④3.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的半徑為5,BC=8,則AB的長為()A.8 B.10 C. D.4.如圖,在□ABCD中,R為BC延長線上的點,連接AR交BD于點P,若CR:AD=2:3,則AP:PR的值為()A.3:5 B.2:3 C.3:4 D.3:25.已知某種禮炮的升空高度h(m)與飛行時間t(s)的關系式是h=﹣(t﹣4)2+1.若此禮炮在升空到最高處時引爆,則引爆需要的時間為()A.3s B.4s C.5s D.6s6.對于反比例函數(shù),下列說法中不正確的是()A.點在它的圖象上B.它的圖象在第一、三象限C.隨的增大而減小D.當時,隨的增大而減小7.已知反比例函數(shù),下列結(jié)論中不正確的是()A.圖象必經(jīng)過點 B.隨的增大而增大C.圖象在第二,四象限內(nèi) D.若,則8.如圖,在菱形中,,且連接則()A. B.C. D.9.如圖,平行于BC的直線DE把△ABC分成的兩部分面積相等,則為()A. B. C. D.10.已知點都在函數(shù)的圖象上,則y1、y2、y3的大小關系是()A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y2二、填空題(每小題3分,共24分)11.如圖,飛鏢游戲板中每一塊小正方形除顏色外都相同.若某人向游戲板投擲飛鏢一次(假設飛鏢落在游戲板上),則飛鏢落在陰影部分的概率是_________.12.若關于x的方程x2-kx+9=0(k為常數(shù))有兩個相等的實數(shù)根,則k=_____.13.如圖已知二次函數(shù)y1=x2+c與一次函數(shù)y2=x+c的圖象如圖所示,則當y1<y2時x的取值范圍_____.14.二次函數(shù)向左、下各平移個單位,所得的函數(shù)解析式_______.15.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).16.方程是關于的一元二次方程,則二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為__________.17.如圖,在△ABC中,∠BAC=33°,將△ABC繞點A按順時針方向旋轉(zhuǎn)50°,對應得到△AB′C′,則∠B′AC的度數(shù)為____.18.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分成6個大小相同的扇形,顏色分為紅、綠、黃三種顏色.指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形).轉(zhuǎn)動一次轉(zhuǎn)盤后,指針指向_____顏色的可能性大.三、解答題(共66分)19.(10分)如圖,已知拋物線經(jīng)過點、,且與軸交于點,拋物線的頂點為,連接,點是線段上的一個動點(不與、)重合.(1)求拋物線的解析式,并寫出頂點的坐標;(2)過點作軸于點,求面積的最大值及取得最大值時點的坐標;(3)在(2)的條件下,若點是軸上一動點,點是拋物線上一動點,試判斷是否存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊若存在,請直接寫出點的坐標:若不存在,請說明理由.20.(6分)問題背景如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.類比探究如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.(2)△DEF是否為正三角形?請說明理由.(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關系,設BD=a,AD=b,AB=c,請?zhí)剿鱝,b,c滿足的等量關系.21.(6分)某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,回答下列問題:(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為度,并將條形統(tǒng)計圖補充完整.(2)此次比賽有三名同學得滿分,分別是甲、乙、丙,現(xiàn)從這三名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丙的概率.22.(8分)如圖,⊙O是△ABC的外接圓,AB=AC,P是⊙O上一點,請你只用無刻度的直尺,分別畫出圖①和圖②中∠P的平分線.23.(8分)(1)解方程.(2)計算:.24.(8分)如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4m,B,C在同一水平面上.(1)求斜坡AB的水平寬度BC;(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5m,EF=2m.將貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1m)25.(10分)(1)①如圖1,請用直尺(不帶刻度)和圓規(guī)作出的內(nèi)接正三角形(按要求作圖,不要求寫作法,但要保留作圖痕跡).②若的內(nèi)接正三角形邊長為6,求的半徑;(2)如圖2,的半徑就是(1)中所求半徑的值.點在上,是的切線,點在射線上,且,點從點出發(fā),以每秒1個單位的速度沿射線方向移動,點是上的點(不與點重合),是的切線.設點運動的時間為(秒),當為何值時,是直角三角形,請你求出滿足條件的所有值.26.(10分)為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;(2)若學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)解析式即可依次判斷正確與否.【詳解】∵a=-2∴開口向下,A選項錯誤;∵,∴對稱軸為直線x=-1,故B錯誤;∵,∴頂點坐標為(-1,-4),故C錯誤;∵對稱軸為直線x=-1,開口向下,∴當時,隨的增大而增大,故D正確.故選:D.此題考查二次函數(shù)的性質(zhì),掌握不同函數(shù)解析式的特點,各字母代表的含義,并熟練運用解題是關鍵.2、C【分析】根據(jù)∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,從而得出DF=AD,BF=AC.則CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因為BF=AC所以CE=AC=BF;連接CG.因為△BCD是等腰直角三角形,即BD=CD.又因為DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜邊,CE是直角邊,所以CE<CG.即AE<BG.【詳解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正確;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正確;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正確;連接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜邊,CE是直角邊,∴CE<CG.∵CE=AE,∴AE<BG.故④錯誤.故選C.本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.在復雜的圖形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并應用此點.3、D【分析】根據(jù)垂徑定理求出BD,根據(jù)勾股定理求出OD,求出AD,再根據(jù)勾股定理求出AB即可.【詳解】解:∵AO⊥BC,AO過O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD=,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB=,故選D.本題考查了垂徑定理和勾股定理,能根據(jù)垂徑定理求出BD長是解此題的關鍵.4、A【分析】證得△ADP∽△RBP,可得,由AD=BC,可得.【詳解】∵在?ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故選:A.此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知相似三角形的對應線段成比例.5、B【分析】根據(jù)頂點式就可以直接求出結(jié)論;【詳解】解:∵﹣1<0,∴當t=4s時,函數(shù)有最大值.即禮炮從升空到引爆需要的時間為4s,故選:B.本題主要考查了二次函數(shù)的應用,掌握二次函數(shù)的應用是解題的關鍵.6、C【解析】根據(jù)反比例函數(shù)的性質(zhì)用排除法解答,當系數(shù)k>0時,函數(shù)圖象在第一、三象限,當x>0或x<0時,y隨x的增大而減小,由此進行判斷.【詳解】A、把點(-2,-1)代入反比例函數(shù)y=得-1=-1,本選項正確;

B、∵k=2>0,∴圖象在第一、三象限,本選項正確;

C、∵k=2>0,∴圖象在第一、三象限內(nèi)y隨x的增大而減小,本選項不正確;

D、當x<0時,y隨x的增大而減小,本選項正確.

故選C.考查了反比例函數(shù)y=(k≠0)的性質(zhì):①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內(nèi),y隨x的增大而減??;當k<0時,在同一個象限,y隨x的增大而增大.7、B【分析】根據(jù)反比例函數(shù)圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據(jù)反比例函數(shù)的性質(zhì):k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數(shù),所過的點的橫縱坐標之積=?6,此結(jié)論正確,故此選項不符合題意;B、反比例函數(shù),在每一象限內(nèi)y隨x的增大而增大,此結(jié)論不正確,故此選項符合題意;C、反比例函數(shù),圖象在第二、四象限內(nèi),此結(jié)論正確,故此選項不合題意;D、反比例函數(shù),當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.此題主要考查了反比例函數(shù)的性質(zhì),以及反比例函數(shù)圖象上點的坐標特點,關鍵是熟練掌握反比例函數(shù)的性質(zhì):(1)反比例函數(shù)y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減?。唬?)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.8、D【分析】菱形ABCD屬于平行四邊形,所以BCAD,根據(jù)兩直線平行同旁內(nèi)角互補,可得∠BAD與∠ABC互補,已知∠BAD=120°,∠ABC的度數(shù)即可知,且∠BCE=90°,CE=BC可推BCE為等腰直角三角形,其中∠CBE=45°,∠ABE=∠ABC-∠CBE,故∠ABE的度數(shù)可得.【詳解】解:∵在菱形ABCD中,BCAD,∴∠BAD+∠ABC=180°(兩直線平行,同旁內(nèi)角互補),且∠BAD=120°,∴∠ABC=60°,又∵CEAD,且BCAD,∴CEBC,可得∠BCE=90°,又∵CE=BC,∴BCE為等腰直角三角形,∠CBE=45°,∴∠ABE=∠ABC-∠CBE=60°-45°=15°,故選:D.本題主要考察了平行線的性質(zhì)及菱形的性質(zhì)求角度,掌握平行線的性質(zhì):①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補;菱形中,四條邊的線段長度一樣,根據(jù)以上的性質(zhì)定理,從邊長的關系推得三角形的形狀,進而求得角度.9、D【分析】先證明△ADE∽△ABC,然后根據(jù)相似三角形的面積的比等于相似比的平方求解即可.【詳解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的兩部分面積相等,∴△ADE:△ABC=1:2,∴.故選D.本題主要考查了相似三角形的判定與性質(zhì),平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似;相似三角形面積的比等于相似比的平方.10、A【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征,將點分別代入函數(shù),求得的,然后比較它們的大小.【詳解】解:把分別代入:∵>>,∴>>故選:A.本題考查的是反比例函數(shù)的性質(zhì),考查根據(jù)自變量的值判斷函數(shù)值的大小,掌握判斷方法是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】∵總面積為3×3=9,其中陰影部分面積為4××1×2=4,∴飛鏢落在陰影部分的概率是,故答案為.此題考查幾何概率,解題關鍵在于掌握運算法則.12、±1【分析】根據(jù)方程x2-kx+9=0有兩個相等的實數(shù)根,所以根的判別式△=b2-4ac=0,即k2-4×1×9=0,然后解方程即可.【詳解】∵方程x2+kx+9=0有兩個相等的實數(shù)根,

∴△=0,即k2-4×1×9=0,解得k=±1.

故答案為±1.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.13、0<x<1.【解析】首先將兩函數(shù)解析式聯(lián)立得出其交點橫坐標,進而得出當y1<y2時x的取值范圍.【詳解】解:由題意可得:x2+c=x+c,解得:x1=0,x2=1,則當y1<y2時x的取值范圍:0<x<1.故答案為0<x<1.此題主要考查了二次函數(shù)與一次函數(shù),正確得出兩函數(shù)的交點橫坐標是解題關鍵.14、【分析】根據(jù)二次函數(shù)圖象的平移規(guī)律即可得.【詳解】二次函數(shù)向左平移2個單位所得的函數(shù)解析式為,再向下平移2個單位所得的函數(shù)解析式為,即,故答案為:.本題考查了二次函數(shù)圖象的平移規(guī)律,掌握理解二次函數(shù)圖象的平移規(guī)律是解題關鍵.15、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).16、9【分析】根據(jù)一元二次方程的定義可確定m的值,即可得二次項系數(shù)、一次項系數(shù)、常數(shù)項的值,進而可得答案.【詳解】∵方程是關于的一元二次方程,∴m2-2=2,m+2≠0,解得:m=2,∴二次項系數(shù)為4,一次項系數(shù)為4,常數(shù)項為1,∴二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為4+4+1=9,故答案為:9本題考查一元二次方程的定義,只含有一個未知數(shù)(一元),并且未知數(shù)項的最高次數(shù)是2(二次)的整式方程叫做一元二次方程;一元二次方程經(jīng)過整理都可化成一般形式ax2+bx+c=0(a≠0),其中ax2叫做二次項,a是二次項系數(shù);bx叫做一次項,b是一次項系數(shù);c叫作做常數(shù)項.注意不要漏掉a≠0的條件,避免漏解.17、17°【詳解】解:∵∠BAC=33°,將△ABC繞點A按順時針方向旋轉(zhuǎn)50°,對應得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度數(shù)=50°?33°=17°.故答案為17°.18、紅【解析】哪一種顏色多,指針指向那種顏色的可能性就大.【詳解】∵轉(zhuǎn)盤分成6個大小相同的扇形,紅色的有3塊,∴轉(zhuǎn)動一次轉(zhuǎn)盤后,指針指向紅顏色的可能性大.故答案為:紅.本題考查了可能性大小的知識,解題的關鍵是看清那種顏色的最多,難度不大.三、解答題(共66分)19、(1),D的坐標為(1,4);(2)當m=時△BPE的面積取得最大值為,P的坐標是(,3);(3)存在,M點的坐標為;;;;;【分析】(1)先根據(jù)拋物線經(jīng)過A(-1,0)B(3,0)兩點,分別求出a、b的值,再代入拋物線即可求出二次函數(shù)的解析式并得出頂點的坐標;(2)先設出BD解析式y(tǒng)=kx+b,再把B、D兩點坐標代入求出k、b的值,得出BD解析式,再根據(jù)面積公式即可求出最大值以及點的坐標;(3)根據(jù)題意利用平行四邊形的性質(zhì)進行分析求值,注意分類討論.【詳解】解:(1)∵二次函數(shù)y=ax2+bx+3經(jīng)過點A(﹣1,0)、B(3,0)∴所以二次函數(shù)的解析式為:D的坐標為(1,4)(2)設BD的解析式為y=kx+b∵過點B(3,0),D(1,4)∴解得BD的解析式為y=-2x+6設P(m,)PE⊥y軸于點E∴△BPE的PE邊上的高h=S△BPE=×PE×h=m()==∵a=-1<0當m=時△BPE的面積取得最大值為當m=時,y=-2×+6=3P的坐標是(,3)(3)存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊形,當點,,,為頂點的四邊形是平行四邊形,可得BM平行于PN,則有N點縱坐標等于P點縱坐標,把y=3代入求出N的坐標(0,3)或(2,3),當N的坐標(0,3)或(2,3)時,根據(jù)平行四邊形性質(zhì)求得M點的坐標為;,;當BP平行于MN時,根據(jù)平行四邊形性質(zhì)求得M點的坐標為;;.M點的坐標為:;;;;.本題考查運用待定系數(shù)法求得函數(shù)的解析式,根據(jù)二次函數(shù)的解析式求得函數(shù)的最值,平行四邊形的性質(zhì)進行計算,注意數(shù)形結(jié)合的思想.20、(1)見解析;(1)△DEF是正三角形;理由見解析;(3)c1=a1+ab+b1【解析】試題分析:(1)由正三角形的性質(zhì)得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、(1)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出結(jié)論.試題解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如圖所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考點:1.全等三角形的判定與性質(zhì);1.勾股定理.21、(1)72,圖詳見解析;(2).【分析】(1)先畫出條形統(tǒng)計圖,再求出圓心角即可;(2)先畫出樹狀圖,再求出概率即可.【詳解】(1)條形統(tǒng)計圖為;;扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案為:72;(2)畫樹狀圖:由樹狀圖可知:所有等可能的結(jié)果有6種,其中符合條件的有2種,所有P(甲、丙)==,即選中的兩名同學恰好是甲、丙的概率是.本題考查了樹狀圖、條形統(tǒng)計圖和扇形統(tǒng)計圖等知識點,能畫出條形圖和樹狀圖是解此題的關鍵.22、見解析.【分析】如圖①中連接PA,根據(jù)等弧所對得圓周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分線;如圖②中,連接AO延長交⊙O于E,連接PE,由垂徑定理和圓周角定理易知∠EPB=∠EPC.【詳解】如圖①中,連接PA,PA就是∠BPC的平分線.理由:∵AB=AC,∴=,∴∠APB=∠APC.如圖②中,連接AO延長交⊙O于E,連接PE,PE就是∠BPC的平分線.理由:∵AB=AC,∴=,∴=,∴∠EPB=∠EPC.本題主要考查圓周角定理和垂徑定理,根據(jù)等弧所對的圓周角相等得到角平分線是關鍵.23、(1),;(2).【分析】(1)根據(jù)題意直接運用公式法解一元二次方程即可;(2)根據(jù)題意運用冪的運算以及特殊銳角三角函數(shù)進行計算即可.【詳解】解:(1)由題意可知,,.(2).本題考查解一元二次方程以及實數(shù)的運算,熟練掌握實數(shù)運算法則以及解一元二次方程的解法是解本題的關鍵.24、(1)BC=8m;(2)點D離地面的高為4.5m.【分析】(1)根據(jù)坡度定義直接解答即可;(2)作DS⊥BC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據(jù),得到GH=1m,利用勾股定理求出DH的長,然后求出BH=5m,進而求出HS,然后得到DS.【詳解】(1)∵坡度為i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足為S,且與AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∵DG=EF=2m,∴GH=1m,∴DH=m,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論