浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州市西湖區(qū)2026屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.國家實施”精準(zhǔn)扶貧“政策以來,很多貧困人口走向了致富的道路.某地區(qū)2016年底有貧困人口9萬人,通過社會各界的努力,2018年底貧困人口減少至1萬人.設(shè)2016年底至2018年底該地區(qū)貧困人口的年平均下降率為,根據(jù)題意列方程得()A. B. C. D.2.下列方程中,是一元二次方程的是()A.x+=0 B.a(chǎn)x2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=03.如圖所示,若△ABC∽△DEF,則∠E的度數(shù)為()A.28° B.32° C.42° D.52°4.如圖,點D在以AC為直徑的⊙O上,如果∠BDC=20°,那么∠ACB的度數(shù)為()A.20° B.40° C.60° D.70°5.如圖,在矩形ABCD中,AB=4,AD=3,若以A為圓心,4為半徑作⊙A.下列四個點中,在⊙A外的是()A.點A B.點B C.點C D.點D6.已知二次函數(shù)的圖象如圖所示,分析下列四個結(jié)論:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個7.如圖,點,,均在坐標(biāo)軸上,,過,,作,是上任意一點,連結(jié),,則的最大值是()A.4 B.5 C.6 D.8.如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F,若BC=4,∠CBD=30°,則AE的長為()A. B. C. D.9.如圖,△ABC的內(nèi)切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.910.如圖,點A、B、C在上,∠A=72°,則∠OBC的度數(shù)是()A.12° B.15° C.18° D.20°11.如圖,周長為定值的平行四邊形中,,設(shè)的長為,周長為16,平行四邊形的面積為,與的函數(shù)關(guān)系的圖象大致如圖所示,當(dāng)時,的值為()A.1或7 B.2或6 C.3或5 D.412.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組二、填空題(每題4分,共24分)13.如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點D是AB邊上一點(不與A、B重合),若過點D的直線截得的三角形與△ABC相似,并且平分△ABC的周長,則AD的長為____.14.已知一次函數(shù)y1=x+m的圖象如圖所示,反比例函數(shù)y2=,當(dāng)x>0時,y2隨x的增大而_____(填“增大”或“減小”).15.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.16.如圖,一段拋物線:記為,它與軸交于兩點,;將繞旋轉(zhuǎn)得到,交軸于;將繞旋轉(zhuǎn)得到,交軸于;如此進行下去,直至得到,若點在第段拋物線上,則___________.17.一元二次方程x2﹣4=0的解是._________18.點在拋物線上,則__________.(填“>”,“<”或“=”).三、解答題(共78分)19.(8分)如圖,有一座圓弧形拱橋,它的跨度為,拱高為,當(dāng)洪水泛濫到跨度只有時,就要采取緊急措施,若某次洪水中,拱頂離水面只有,即時,試通過計算說明是否需要采取緊急措施.20.(8分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C.求證:∠A=∠D.21.(8分)如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.(1)求證:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的長.22.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點C順時針方向旋轉(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當(dāng)90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點E.(1)如圖1,當(dāng)∠CA′D=15°時,作∠A′EC的平分線EF交BC于點F.①寫出旋轉(zhuǎn)角α的度數(shù);②求證:EA′+EC=EF;(2)如圖2,在(1)的條件下,設(shè)P是直線A′D上的一個動點,連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號)23.(10分)如圖,在△ABC中,D是BC邊上的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的長.24.(10分)如圖,一次函數(shù)y=﹣x+5的圖象與坐標(biāo)軸交于A,B兩點,與反比例函數(shù)y=的圖象交于M,N兩點,過點M作MC⊥y軸于點C,且CM=1,過點N作ND⊥x軸于點D,且DN=1.已知點P是x軸(除原點O外)上一點.(1)直接寫出M、N的坐標(biāo)及k的值;(2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標(biāo);如果不能,請說明理由;(3)當(dāng)點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標(biāo);若不存在,請說明理由.25.(12分)某商貿(mào)公司以每千克元的價格購進一種干果,計劃以每千克元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:.(1)求與之間的函數(shù)關(guān)系式;(2)函數(shù)圖象中點表示的實際意義是;(3)該商貿(mào)公司要想獲利元,則這種干果每千克應(yīng)降價多少元?26.為加強中小學(xué)生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;(2)若學(xué)校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

參考答案一、選擇題(每題4分,共48分)1、B【分析】等量關(guān)系為:2016年貧困人口年貧困人口,把相關(guān)數(shù)值代入計算即可.【詳解】解:設(shè)這兩年全省貧困人口的年平均下降率為,根據(jù)題意得:,故選B.本題考查由實際問題抽象出一元二次方程,得到2年內(nèi)變化情況的等量關(guān)系是解決本題的關(guān)鍵.2、C【解析】一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為1.【詳解】A.該方程不是整式方程,故本選項不符合題意.B.當(dāng)a=1時,該方程不是關(guān)于x的一元二次方程,故本選項不符合題意.C.該方程符合一元二次方程的定義,故本選項不符合題意.D.該方程中含有兩個未知數(shù),屬于二元一次方程,故本選項不符合題意.故選:C.本題考查了一元二次方程的性質(zhì)和判定,掌握一元二次方程必須滿足的條件是解題的關(guān)鍵.3、C【詳解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故選C.4、D【分析】由AC為⊙O的直徑,可得∠ABC=90°,根據(jù)圓周角定理即可求得答案.【詳解】∵AC為⊙O的直徑,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴.故選:D.本題考查了圓周角定理,正確理解直徑所對的圓周角是直角,同圓或等圓中,同弧或等弧所對的圓周角相等是解題的關(guān)鍵.5、C【解析】連接AC,利用勾股定理求出AC的長度,即可解題.【詳解】解:如下圖,連接AC,∵圓A的半徑是4,AB=4,AD=3,∴由勾股定理可知對角線AC=5,∴D在圓A內(nèi),B在圓上,C在圓外,故選C.本題考查了圓的簡單性質(zhì),屬于簡單題,利用勾股定理求出AC的長是解題關(guān)鍵.6、B【解析】①由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;

②由拋物線與x軸有兩個交點判斷即可;③由,a<1,得到b>2a,所以2a-b<1;④由當(dāng)x=1時y<1,可得出a+b+c<1.【詳解】解:①∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),與y軸交于正半軸,

∴a<1,,c>1,∴b<1,

∴abc>1,結(jié)論①錯誤;

②∵二次函數(shù)圖象與x軸有兩個交點,

∴b2-4ac>1,結(jié)論②正確;③∵,a<1,

∴b>2a,

∴2a-b<1,結(jié)論③錯誤;

④∵當(dāng)x=1時,y<1;

∴a+b+c<1,結(jié)論④正確.

故選:B.本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系.二次函數(shù)y=ax2+bx+c(a≠1)系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.7、C【分析】連接,,如圖,利用圓周角定理可判定點在上,易得,,,,,設(shè),則,由于表示點到原點的距離,則當(dāng)為直徑時,點到原點的距離最大,由于為平分,則,利用點在圓上得到,則可計算出,從而得到的最大值.【詳解】解:連接,,如圖,,為的直徑,點在上,,,,,,,設(shè),,而表示點到原點的距離,當(dāng)為直徑時,點到原點的距離最大,為平分,,,,即,此時,即的最大值是1.故選:.本題考查了點與圓的位置關(guān)系、圓周角定理、勾股定理等,作出輔助線,得到是解題的關(guān)鍵.8、D【分析】如圖,作EH⊥AB于H,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.【詳解】如圖,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵點E為BC中點,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故選:D.本題考查解直角三角形的應(yīng)用,正確作出輔助線構(gòu)建直角三角形并熟記三角函數(shù)的定義是解題關(guān)鍵.9、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設(shè)⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內(nèi)切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設(shè)⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.本題考查了三角形的內(nèi)切圓,勾股定理的逆定理,正方形判定與性質(zhì),面積法等,正確把握相關(guān)知識是解題的關(guān)鍵.10、C【分析】根據(jù)圓周角定理可得∠BOC的度數(shù),根據(jù)等腰三角形的性質(zhì)即可得答案.【詳解】∵點A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故選:C.本題考查圓周角定理及等腰三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.11、B【分析】過點A作AE⊥BC于點E,構(gòu)建直角△ABE,通過解該直角三角形求得AE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,即可求解.【詳解】如圖,過點A作AE⊥BC于點E,∵∠B=60°,邊AB的長為x,∴AE=AB?sin60°=∵平行四邊形ABCD的周長為16,∴BC=(16?2x)=8?x,∴y=BC?AE=(8?x)×(0≤x≤8).當(dāng)時,(8?x)×=解得x1=2,x2=6故選B.考查了動點問題的函數(shù)圖象.掌握平行四邊形的周長公式和解直角三角形求得AD、BE的長度是解題的關(guān)鍵.12、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應(yīng)相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應(yīng)邊成比例,符合相似的條件;所以正確的有③⑥.故選A.二、填空題(每題4分,共24分)13、、、【分析】根據(jù)直線平分三角形周長得出線段的和差關(guān)系,再通過四種情形下的相似三角形的性質(zhì)計算線段的長.【詳解】解:設(shè)過點D的直線與△ABC的另一個交點為E,∵AC=4,BC=3,∴AB==5設(shè)AD=x,BD=5-x,∵DE平分△ABC周長,∴周長的一半為(3+4+5)÷2=6,分四種情況討論:①△BED∽△BCA,如圖1,BE=1+x∴,即:,解得x=,②△BDE∽△BCA,如圖2,BE=1+x∴,即:,解得:x=,BE=>BC,不符合題意.③△ADE∽△ABC,如圖3,AE=6-x∴,即,解得:x=,④△BDE∽△BCA,如圖4,AE=6-x∴,即:,解得:x=,綜上:AD的長為、、.本題考查的相似三角形的判定和性質(zhì),根據(jù)不同的相似模型分情況討論,根據(jù)不同的線段比例關(guān)系求解.14、減小.【分析】根據(jù)一次函數(shù)圖象與y軸交點可得m<2,進而可得2-m>0,再根據(jù)反比例函數(shù)圖象的性質(zhì)可得答案.【詳解】根據(jù)一次函數(shù)y1=x+m的圖象可得m<2,∴2﹣m>0,∴反比例函數(shù)y2=的圖象在一,三象限,當(dāng)x>0時,y2隨x的增大而減小,故答案為:減?。祟}主要考查了反比例函數(shù)的性質(zhì),以及一次函數(shù)的性質(zhì),關(guān)鍵是正確判斷出m的取值范圍.15、或或1【詳解】如圖所示:①當(dāng)AP=AE=1時,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當(dāng)PE=AE=1時,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當(dāng)PA=PE時,底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.16、-1【分析】將這段拋物線C1通過配方法求出頂點坐標(biāo)及拋物線與x軸的交點,由旋轉(zhuǎn)的性質(zhì)可以知道C1與C2的頂點到x軸的距離相等,且OA1=A1A2,照此類推可以推導(dǎo)知道點P(11,m)為拋物線C6的頂點,從而得到結(jié)果.【詳解】∵y=?x(x?2)(0≤x≤2),∴配方可得y=?(x?1)2+1(0≤x≤2),∴頂點坐標(biāo)為(1,1),∴A1坐標(biāo)為(2,0)∵C2由C1旋轉(zhuǎn)得到,∴OA1=A1A2,即C2頂點坐標(biāo)為(3,?1),A2(4,0);照此類推可得,C3頂點坐標(biāo)為(5,1),A3(6,0);C4頂點坐標(biāo)為(7,?1),A4(8,0);C5頂點坐標(biāo)為(9,1),A5(10,0);C6頂點坐標(biāo)為(11,?1),A6(12,0);∴m=?1.故答案為:-1.本題考查了二次函數(shù)的性質(zhì)及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是求出拋物線的頂點坐標(biāo),學(xué)會從一般到特殊的探究方法,屬于中考??碱}型.17、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.18、>【分析】把A、B兩點的坐標(biāo)代入拋物線的解析式,求出的值即得答案.【詳解】解:把A、B兩點的坐標(biāo)代入拋物線的解析式,得:,,∴>.故答案為:>.本題考查了二次函數(shù)的性質(zhì)和二次函數(shù)圖象上點的坐標(biāo)特征,屬于基本題型,掌握比較的方法是解答關(guān)鍵.三、解答題(共78分)19、不需要采取緊急措施,理由詳見解析.【分析】連接OA′,OA.設(shè)圓的半徑是R,則ON=R?4,OM=R?1.根據(jù)垂徑定理求得AM的長,在直角三角形AOM中,根據(jù)勾股定理求得R的值,在直角三角形A′ON中,根據(jù)勾股定理求得A′N的值,再根據(jù)垂徑定理求得A′B′的長,從而作出判斷.【詳解】設(shè)圓弧所在圓的圓心為,連結(jié),,如圖所示設(shè)半徑為則由垂徑定理可知,∵,∴,且在中,由勾股定理可得即,解得∴在中,由勾股定理可得∴∴不需要采取緊急措施.此類題綜合運用了勾股定理和垂徑定理,解題的關(guān)鍵是熟知垂徑定理的應(yīng)用.20、答案見解析【分析】由BE=CF可得BF=CE,再結(jié)合AB=DC,∠B=∠C可證得△ABF≌△DCE,問題得證.【詳解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.本題考查了全等三角形的判定和性質(zhì),是中考中比較常見的知識點,一般難度不大,需熟練掌握全等三角形的判定和性質(zhì).21、(1)、證明過程見解析;(2)、【解析】試題分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,從而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性質(zhì)可得AE=DE,設(shè)DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根據(jù)相似三角形的對應(yīng)邊成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的長.試題解析:(1)證明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,設(shè)DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的長是.考點:相似三角形的判定與性質(zhì).22、(1)①105°,②見解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解決問題,②連接A′F,設(shè)EF交CA′于點O,在EF時截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CE(SAS),即可解決問題.(2)如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F(xiàn)關(guān)于A′E對稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問題.【詳解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α為105°.②證明:連接A′F,設(shè)EF交CA′于點O.在EF時截取EM=EC,連接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等邊三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等邊三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F(xiàn)關(guān)于A′E對稱,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值為.本題屬于四邊形綜合題,考查旋轉(zhuǎn)變換相關(guān),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)以及三角形的三邊關(guān)系等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題,難度較大.23、(1)見解析;(2)【分析】(1)根據(jù)題目條件證明和,利用兩組對應(yīng)角相等的三角形相似,證明;(2)過點A作于點M,先通過的面積求出AM的長,根據(jù)得到,再算出DE的長.【詳解】解:(1)∵,∴,∵D是BC邊上的中點且∴,∴,∴;(2)如圖,過點A作于點M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.本題考查相似三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì)和判定定理.24、(1)M(1,4),N(4,1),k=4;(2)(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2);(3)(,5)或(,3).【分析】(1)利用待定系數(shù)法即可解決問題;(2)分三種情形求解:①如圖2,點P在x軸的正半軸上時,繞P順時針旋轉(zhuǎn)到點Q,根據(jù)△COP≌△PHQ,得CO=PH,OP=QH,設(shè)P(x,0),表示Q(x+4,x),代入反比例函數(shù)的關(guān)系式中可得Q的兩個坐標(biāo);②如圖3,點P在x軸的負半軸上時;③如圖4,點P在x軸的正半軸上時,繞P逆時針旋轉(zhuǎn)到點Q,同理可得結(jié)論.(3)分兩種情形分別求解即可;【詳解】解:(1)由題意M(1,4),n(4,1),∵點M在y=上,∴k=4;(2)當(dāng)點P滑動時,點Q能在反比例函數(shù)的圖象上;如圖1,CP=PQ,∠CPQ=90°,過Q作QH⊥x軸于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函數(shù)的解析式:y=;當(dāng)x=1時,y=4,∴M(1,4),∴OC=PH=4設(shè)P(x,0),∴Q(x+4,x),當(dāng)點Q落在反比例函數(shù)的圖象上時,x(x+4)=4,x2+4x+4=8,x=﹣2±,當(dāng)x=﹣2±時,x+4=2+,如圖1,Q(2+2,2+2);當(dāng)x=﹣2﹣2時,x+4=2﹣2,如圖2,Q(2﹣2,2﹣2);如圖3,CP=PQ,∠CPQ=90°,設(shè)P(x,0)過P作GH∥y軸,過C作CG⊥GH,過Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),綜上所述,點Q的坐標(biāo)為(2+2,﹣2+2)或(2﹣2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論